IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06694-0.html
   My bibliography  Save this article

A reference haplotype panel for genome-wide imputation of short tandem repeats

Author

Listed:
  • Shubham Saini

    (University of California San Diego)

  • Ileena Mitra

    (University of California San Diego)

  • Nima Mousavi

    (University of California, San Diego)

  • Stephanie Feupe Fotsing

    (University of California San Diego
    University of California San Diego)

  • Melissa Gymrek

    (University of California San Diego
    University of California, San Diego)

Abstract

Short tandem repeats (STRs) are involved in dozens of Mendelian disorders and have been implicated in complex traits. However, genotyping arrays used in genome-wide association studies focus on single nucleotide polymorphisms (SNPs) and do not readily allow identification of STR associations. We leverage next-generation sequencing (NGS) from 479 families to create a SNP + STR reference haplotype panel. Our panel enables imputing STR genotypes into SNP array data when NGS is not available for directly genotyping STRs. Imputed genotypes achieve mean concordance of 97% with observed genotypes in an external dataset compared to 71% expected under a naive model. Performance varies widely across STRs, with near perfect concordance at bi-allelic STRs vs. 70% at highly polymorphic repeats. Imputation increases power over individual SNPs to detect STR associations with gene expression. Imputing STRs into existing SNP datasets will enable the first large-scale STR association studies across a range of complex traits.

Suggested Citation

  • Shubham Saini & Ileena Mitra & Nima Mousavi & Stephanie Feupe Fotsing & Melissa Gymrek, 2018. "A reference haplotype panel for genome-wide imputation of short tandem repeats," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06694-0
    DOI: 10.1038/s41467-018-06694-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06694-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06694-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsung-Yu Lu & Mark J. P. Chaisson, 2021. "Profiling variable-number tandem repeat variation across populations using repeat-pangenome graphs," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Yirong Shi & Yiwei Niu & Peng Zhang & Huaxia Luo & Shuai Liu & Sijia Zhang & Jiajia Wang & Yanyan Li & Xinyue Liu & Tingrui Song & Tao Xu & Shunmin He, 2023. "Characterization of genome-wide STR variation in 6487 human genomes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06694-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.