IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06686-0.html
   My bibliography  Save this article

Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells

Author

Listed:
  • Seung-Chul Choi

    (University of Florida)

  • Anton A. Titov

    (University of Florida)

  • Georges Abboud

    (University of Florida)

  • Howard R. Seay

    (University of Florida)

  • Todd M. Brusko

    (University of Florida)

  • Derry C. Roopenian

    (The Jackson Laboratory)

  • Shahram Salek-Ardakani

    (University of Florida)

  • Laurence Morel

    (University of Florida)

Abstract

Follicular helper T (TFH) cells are expanded in systemic lupus erythematosus, where they are required to produce high affinity autoantibodies. Eliminating TFH cells would, however compromise the production of protective antibodies against viral and bacterial pathogens. Here we show that inhibiting glucose metabolism results in a drastic reduction of the frequency and number of TFH cells in lupus-prone mice. However, this inhibition has little effect on the production of T-cell-dependent antibodies following immunization with an exogenous antigen or on the frequency of virus-specific TFH cells induced by infection with influenza. In contrast, glutaminolysis inhibition reduces both immunization-induced and autoimmune TFH cells and humoral responses. Solute transporter gene signature suggests different glucose and amino acid fluxes between autoimmune TFH cells and exogenous antigen-specific TFH cells. Thus, blocking glucose metabolism may provide an effective therapeutic approach to treat systemic autoimmunity by eliminating autoreactive TFH cells while preserving protective immunity against pathogens.

Suggested Citation

  • Seung-Chul Choi & Anton A. Titov & Georges Abboud & Howard R. Seay & Todd M. Brusko & Derry C. Roopenian & Shahram Salek-Ardakani & Laurence Morel, 2018. "Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06686-0
    DOI: 10.1038/s41467-018-06686-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06686-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06686-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elliot H. Akama-Garren & Theo Broek & Lea Simoni & Carlos Castrillon & Cees E. Poel & Michael C. Carroll, 2021. "Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Bonnie Huang & James D. Phelan & Silvia Preite & Julio Gomez-Rodriguez & Kristoffer H. Johansen & Hirofumi Shibata & Arthur L. Shaffer & Qin Xu & Brendan Jeffrey & Martha Kirby & Stacie Anderson & Yan, 2022. "In vivo CRISPR screens reveal a HIF-1α-mTOR-network regulates T follicular helper versus Th1 cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06686-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.