IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06610-6.html
   My bibliography  Save this article

Diffusion-limited reactions in dynamic heterogeneous media

Author

Listed:
  • Yann Lanoiselée

    (CNRS—Ecole Polytechnique, University Paris-Saclay)

  • Nicolas Moutal

    (CNRS—Ecole Polytechnique, University Paris-Saclay)

  • Denis S. Grebenkov

    (CNRS—Ecole Polytechnique, University Paris-Saclay)

Abstract

Most biochemical reactions in living cells rely on diffusive search for target molecules or regions in a heterogeneous overcrowded cytoplasmic medium. Rapid rearrangements of the medium constantly change the effective diffusivity felt locally by a diffusing particle and thus impact the distribution of the first-passage time to a reaction event. Here, we investigate the effect of these dynamic spatiotemporal heterogeneities onto diffusion-limited reactions. We describe a general mathematical framework to translate many results for ordinary homogeneous Brownian motion to heterogeneous diffusion. In particular, we derive the probability density of the first-passage time to a reaction event and show how the dynamic disorder broadens the distribution and increases the likelihood of both short and long trajectories to reactive targets. While the disorder slows down reaction kinetics on average, its dynamic character is beneficial for a faster search and realization of an individual reaction event triggered by a single molecule.

Suggested Citation

  • Yann Lanoiselée & Nicolas Moutal & Denis S. Grebenkov, 2018. "Diffusion-limited reactions in dynamic heterogeneous media," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06610-6
    DOI: 10.1038/s41467-018-06610-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06610-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06610-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorka Muñoz-Gil & Giovanni Volpe & Miguel Angel Garcia-March & Erez Aghion & Aykut Argun & Chang Beom Hong & Tom Bland & Stefano Bo & J. Alberto Conejero & Nicolás Firbas & Òscar Garibo i Orts & Aless, 2021. "Objective comparison of methods to decode anomalous diffusion," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Mutothya, Nicholas Mwilu & Xu, Yong, 2021. "Mean first passage time for diffuse and rest search in a confined spherical domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    3. Ahamad, Nabi & Debnath, Pallavi, 2020. "Rouse model in crowded environment modeled by “diffusing diffusivity”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Janczura, Joanna & Burnecki, Krzysztof & Muszkieta, Monika & Stanislavsky, Aleksander & Weron, Aleksander, 2022. "Classification of random trajectories based on the fractional Lévy stable motion," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06610-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.