IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06605-3.html
   My bibliography  Save this article

Bright room temperature single photon source at telecom range in cubic silicon carbide

Author

Listed:
  • Junfeng Wang

    (Nanyang Technological University)

  • Yu Zhou

    (Nanyang Technological University)

  • Ziyu Wang

    (Nanyang Technological University)

  • Abdullah Rasmita

    (Nanyang Technological University)

  • Jianqun Yang

    (Harbin institute of Technology)

  • Xingji Li

    (Harbin institute of Technology)

  • Hans Jürgen von Bardeleben

    (UMR 7588 au CNRS 4 place Jussieu)

  • Weibo Gao

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

Single-photon emitters (SPEs) play an important role in a number of quantum information tasks such as quantum key distributions. In these protocols, telecom wavelength photons are desired due to their low transmission loss in optical fibers. In this paper, we present a study of bright single-photon emitters in cubic silicon carbide (3C-SiC) emitting in the telecom range. We find that these emitters are photostable and bright at room temperature with a count rate of ~ MHz. Altogether with the fact that SiC is a growth and fabrication-friendly material, our result may be relevant for future applications in quantum communication technology.

Suggested Citation

  • Junfeng Wang & Yu Zhou & Ziyu Wang & Abdullah Rasmita & Jianqun Yang & Xingji Li & Hans Jürgen von Bardeleben & Weibo Gao, 2018. "Bright room temperature single photon source at telecom range in cubic silicon carbide," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06605-3
    DOI: 10.1038/s41467-018-06605-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06605-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06605-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Husel & Julian Trapp & Johannes Scherzer & Xiaojian Wu & Peng Wang & Jacob Fortner & Manuel Nutz & Thomas Hümmer & Borislav Polovnikov & Michael Förg & David Hunger & YuHuang Wang & Alexander Hö, 2024. "Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06605-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.