IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06535-0.html
   My bibliography  Save this article

Photonic thermal management of coloured objects

Author

Listed:
  • Wei Li

    (Stanford University)

  • Yu Shi

    (Stanford University)

  • Zhen Chen

    (Stanford University
    Southeast University)

  • Shanhui Fan

    (Stanford University)

Abstract

The colours of outdoor structures, such as automobiles, buildings and clothing, are typically chosen for functional or aesthetic reasons. With a chosen colour, however, one must control the radiative thermal load for heating or cooling purposes. Here we provide a comprehensive calculation of the tunable range of radiative thermal load for all colours. The range exceeds 680 Wm−2 for all colours, and can be as high as 866 Wm−2, resulting from effects of metamerism, infrared solar absorption and radiative cooling. We experimentally demonstrate that two photonic structures with the same pink colour can have their temperatures differ by 47.6 °C under sunlight. These structures are over 20 °C either cooler or hotter than a commercial paint with a comparable colour. Furthermore, the hotter pink structure is 10 °C hotter than a commercial black paint. These results elucidate the fundamental potentials of photonic thermal management for coloured objects.

Suggested Citation

  • Wei Li & Yu Shi & Zhen Chen & Shanhui Fan, 2018. "Photonic thermal management of coloured objects," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06535-0
    DOI: 10.1038/s41467-018-06535-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06535-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06535-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    2. Ziwei Fan & Taeseung Hwang & Sam Lin & Yixin Chen & Zi Jing Wong, 2024. "Directional thermal emission and display using pixelated non-imaging micro-optics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Yucan Peng & Wei Li & Bofei Liu & Weiliang Jin & Joseph Schaadt & Jing Tang & Guangmin Zhou & Guanyang Wang & Jiawei Zhou & Chi Zhang & Yangying Zhu & Wenxiao Huang & Tong Wu & Kenneth E. Goodson & Ch, 2021. "Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06535-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.