IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06534-1.html
   My bibliography  Save this article

Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores

Author

Listed:
  • Nicole Stéphanie Galenkamp

    (University of Groningen)

  • Misha Soskine

    (University of Groningen)

  • Jos Hermans

    (University of Groningen)

  • Carsten Wloka

    (University of Groningen)

  • Giovanni Maglia

    (University of Groningen)

Abstract

Crucial steps in the miniaturisation of biosensors are the conversion of a biological signal into an electrical current as well as the direct sampling of bodily fluids. Here we show that protein sensors in combination with a nanopore, acting as an electrical transducer, can accurately quantify metabolites in real time directly from nanoliter amounts of blood and other bodily fluids. Incorporation of the nanopore into portable electronic devices will allow developing sensitive, continuous, and non-invasive sensors for metabolites for point-of-care and home diagnostics.

Suggested Citation

  • Nicole Stéphanie Galenkamp & Misha Soskine & Jos Hermans & Carsten Wloka & Giovanni Maglia, 2018. "Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06534-1
    DOI: 10.1038/s41467-018-06534-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06534-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06534-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxin Yang & Tianle Pan & Zhenming Xie & Wu Yuan & Ho-Pui Ho, 2024. "In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Lauren Ashley Mayse & Ali Imran & Motahareh Ghahari Larimi & Michael S. Cosgrove & Aaron James Wolfe & Liviu Movileanu, 2022. "Disentangling the recognition complexity of a protein hub using a nanopore," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Nicole Stéphanie Galenkamp & Sarah Zernia & Yulan B. Oppen & Marco Noort & Andreas Milias Argeitis & Giovanni Maglia, 2024. "Allostery can convert binding free energies into concerted domain motions in enzymes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Fanjun Li & Monifa A. Fahie & Kaitlyn M. Gilliam & Ryan Pham & Min Chen, 2022. "Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Ki-Baek Jeong & Minju Ryu & Jin-Sik Kim & Minsoo Kim & Jejoong Yoo & Minji Chung & Sohee Oh & Gyunghee Jo & Seong-Gyu Lee & Ho Min Kim & Mi-Kyung Lee & Seung-Wook Chi, 2023. "Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06534-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.