IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06495-5.html
   My bibliography  Save this article

Compact folded metasurface spectrometer

Author

Listed:
  • MohammadSadegh Faraji-Dana

    (T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology)

  • Ehsan Arbabi

    (T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology)

  • Amir Arbabi

    (T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology
    University of Massachusetts Amherst)

  • Seyedeh Mahsa Kamali

    (T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology)

  • Hyounghan Kwon

    (T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology)

  • Andrei Faraon

    (T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology)

Abstract

An optical design space that can highly benefit from the recent developments in metasurfaces is the folded optics architecture where light is confined between reflective surfaces, and the wavefront is controlled at the reflective interfaces. In this manuscript, we introduce the concept of folded metasurface optics by demonstrating a compact spectrometer made from a 1-mm-thick glass slab with a volume of 7 cubic millimeters. The spectrometer has a resolution of ~1.2 nm, resolving more than 80 spectral points from 760 to 860 nm. The device is composed of three reflective dielectric metasurfaces, all fabricated in a single lithographic step on one side of a substrate, which simultaneously acts as the propagation space for light. The folded metasystem design can be applied to many optical systems, such as optical signal processors, interferometers, hyperspectral imagers, and computational optical systems, significantly reducing their sizes and increasing their mechanical robustness and potential for integration.

Suggested Citation

  • MohammadSadegh Faraji-Dana & Ehsan Arbabi & Amir Arbabi & Seyedeh Mahsa Kamali & Hyounghan Kwon & Andrei Faraon, 2018. "Compact folded metasurface spectrometer," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06495-5
    DOI: 10.1038/s41467-018-06495-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06495-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06495-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Zhang & Yinghui Guo & Mingbo Pu & Lianwei Chen & Mingfeng Xu & Minghao Liao & Lanting Li & Xiong Li & Xiaoliang Ma & Xiangang Luo, 2023. "Meta-optics empowered vector visual cryptography for high security and rapid decryption," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zhaoyi Li & Raphaël Pestourie & Joon-Suh Park & Yao-Wei Huang & Steven G. Johnson & Federico Capasso, 2022. "Inverse design enables large-scale high-performance meta-optics reshaping virtual reality," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Brandon Born & Sung-Hoon Lee & Jung-Hwan Song & Jeong Yub Lee & Woong Ko & Mark L. Brongersma, 2023. "Off-axis metasurfaces for folded flat optics," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Michele Cotrufo & Akshaj Arora & Sahitya Singh & Andrea Alù, 2023. "Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Gang Wu & Mohamed Abid & Mohamed Zerara & Jiung Cho & Miri Choi & Cormac Ó Coileáin & Kuan-Ming Hung & Ching-Ray Chang & Igor V. Shvets & Han-Chun Wu, 2024. "Miniaturized spectrometer with intrinsic long-term image memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Yangxi Zhang & Sheng Zhang & Hao Wu & Jinhui Wang & Guang Lin & A. Ping Zhang, 2024. "Miniature computational spectrometer with a plasmonic nanoparticles-in-cavity microfilter array," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Un Jeong Kim & Suyeon Lee & Hyochul Kim & Yeongeun Roh & Seungju Han & Hojung Kim & Yeonsang Park & Seokin Kim & Myung Jin Chung & Hyungbin Son & Hyuck Choo, 2023. "Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06495-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.