IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06493-7.html
   My bibliography  Save this article

Structural basis for PtdInsP2-mediated human TRPML1 regulation

Author

Listed:
  • Michael Fine

    (University of Texas Southwestern Medical Center)

  • Philip Schmiege

    (University of Texas Southwestern Medical Center)

  • Xiaochun Li

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

Abstract

Transient receptor potential mucolipin 1 (TRPML1), a lysosomal channel, maintains the low pH and calcium levels for lysosomal function. Several small molecules modulate TRPML1 activity. ML-SA1, a synthetic agonist, binds to the pore region and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a natural lipid, stimulates channel activity to a lesser extent than ML-SA1; moreover, PtdIns(4,5)P2, another natural lipid, prevents TRPML1-mediated calcium release. Notably, PtdIns(3,5)P2 and ML-SA1 cooperate further increasing calcium efflux. Here we report the structures of human TRPML1 at pH 5.0 with PtdIns(3,5)P2, PtdIns(4,5)P2, or ML-SA1 and PtdIns(3,5)P2, revealing a unique lipid-binding site. PtdIns(3,5)P2 and PtdIns(4,5)P2 bind to the extended helices of S1, S2, and S3. The phosphate group of PtdIns(3,5)P2 induces Y355 to form a π-cation interaction with R403, moving the S4–S5 linker, thus allosterically activating the channel. Our structures and electrophysiological characterizations reveal an allosteric site and provide molecular insight into how lipids regulate TRP channels.

Suggested Citation

  • Michael Fine & Philip Schmiege & Xiaochun Li, 2018. "Structural basis for PtdInsP2-mediated human TRPML1 regulation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06493-7
    DOI: 10.1038/s41467-018-06493-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06493-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06493-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06493-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.