IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06379-8.html
   My bibliography  Save this article

Towards synthetic cells using peptide-based reaction compartments

Author

Listed:
  • Kilian Vogele

    (Technische Universität München)

  • Thomas Frank

    (Technische Universität München)

  • Lukas Gasser

    (Technische Universität München)

  • Marisa A. Goetzfried

    (Technische Universität München)

  • Mathias W. Hackl

    (Technische Universität München)

  • Stephan A. Sieber

    (Technische Universität München)

  • Friedrich C. Simmel

    (Technische Universität München
    Nanosystems Initiative Munich)

  • Tobias Pirzer

    (Technische Universität München)

Abstract

Membrane compartmentalization and growth are central aspects of living cells, and are thus encoded in every cell’s genome. For the creation of artificial cellular systems, genetic information and production of membrane building blocks will need to be coupled in a similar manner. However, natural biochemical reaction networks and membrane building blocks are notoriously difficult to implement in vitro. Here, we utilized amphiphilic elastin-like peptides (ELP) to create self-assembled vesicular structures of about 200 nm diameter. In order to genetically encode the growth of these vesicles, we encapsulate a cell-free transcription-translation system together with the DNA template inside the peptide vesicles. We show in vesiculo production of a functioning fluorescent RNA aptamer and a fluorescent protein. Furthermore, we implement in situ expression of the membrane peptide itself and finally demonstrate autonomous vesicle growth due to the incorporation of this ELP into the membrane.

Suggested Citation

  • Kilian Vogele & Thomas Frank & Lukas Gasser & Marisa A. Goetzfried & Mathias W. Hackl & Stephan A. Sieber & Friedrich C. Simmel & Tobias Pirzer, 2018. "Towards synthetic cells using peptide-based reaction compartments," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06379-8
    DOI: 10.1038/s41467-018-06379-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06379-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06379-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tony Z. Jia & Yutetsu Kuruma, 2019. "Recent Advances in Origins of Life Research by Biophysicists in Japan," Challenges, MDPI, vol. 10(1), pages 1-21, April.
    2. Zhijin Tian & Dandan Shao & Linlin Tang & Zhen Li & Qian Chen & Yongxiu Song & Tao Li & Friedrich C. Simmel & Jie Song, 2024. "Circular single-stranded DNA as a programmable vector for gene regulation in cell-free protein expression systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06379-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.