IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06365-0.html
   My bibliography  Save this article

NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress

Author

Listed:
  • Chantal M. Maghames

    (Univ. Montpellier, UMR5237)

  • Sofia Lobato-Gil

    (Univ. Montpellier, UMR5237
    ITAV CNRS USR3505, IPBS-UPS)

  • Aurelien Perrin

    (Univ. Montpellier, UMR5237)

  • Helene Trauchessec

    (Univ. Montpellier, UMR5237)

  • Manuel S. Rodriguez

    (ITAV CNRS USR3505, IPBS-UPS)

  • Serge Urbach

    (Institute of Functional Genomics)

  • Philippe Marin

    (Institute of Functional Genomics)

  • Dimitris P. Xirodimas

    (Univ. Montpellier, UMR5237)

Abstract

Spatial management of stress-induced protein aggregation is an integral part of the proteostasis network. Protein modification by the ubiquitin-like molecule NEDD8 increases upon proteotoxic stress and it is characterised by the formation of hybrid NEDD8/ubiquitin conjugates. However, the biological significance of this response is unclear. Combination of quantitative proteomics with biological analysis shows that, during proteotoxic stress, NEDDylation promotes nuclear protein aggregation, including ribosomal proteins as a major group. This correlates with protection of the nuclear Ubiquitin Proteasome System from stress-induced dysfunction. Correspondingly, we show that NEDD8 compromises ubiquitination and prevents targeting and processing of substrates by the proteasome. Moreover, we identify HUWE1 as a key E3-ligase that is specifically required for NEDDylation during proteotoxic stress. The study reveals a specific role for NEDD8 in nuclear protein aggregation upon stress and is consistent with the concept that transient aggregate formation is part of a defence mechanism against proteotoxicity.

Suggested Citation

  • Chantal M. Maghames & Sofia Lobato-Gil & Aurelien Perrin & Helene Trauchessec & Manuel S. Rodriguez & Serge Urbach & Philippe Marin & Dimitris P. Xirodimas, 2018. "NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06365-0
    DOI: 10.1038/s41467-018-06365-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06365-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06365-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Riguet & Anne-Laure Mahul-Mellier & Niran Maharjan & Johannes Burtscher & Marie Croisier & Graham Knott & Janna Hastings & Alice Patin & Veronika Reiterer & Hesso Farhan & Sergey Nasarov & Hila, 2021. "Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties," Nature Communications, Nature, vol. 12(1), pages 1-27, December.
    2. Irineos Papakyriacou & Ginte Kutkaite & Marta Rúbies Bedós & Divya Nagarajan & Liam P. Alford & Michael P. Menden & Yumeng Mao, 2024. "Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Katrin Stuber & Tobias Schneider & Jill Werner & Michael Kovermann & Andreas Marx & Martin Scheffner, 2021. "Structural and functional consequences of NEDD8 phosphorylation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06365-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.