IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06332-9.html
   My bibliography  Save this article

Transport evidence for a sliding two-dimensional quantum electron solid

Author

Listed:
  • Pedro Brussarski

    (Northeastern University)

  • S. Li

    (City College of the City University of New York)

  • S. V. Kravchenko

    (Northeastern University
    University of Electronic Science and Technology of China)

  • A. A. Shashkin

    (Chernogolovka)

  • M. P. Sarachik

    (City College of the City University of New York)

Abstract

Ignited by the discovery of the metal-insulator transition, the behaviour of low-disorder two-dimensional (2D) electron systems is currently the focus of a great deal of attention. In the strongly interacting limit, electrons are expected to crystallize into a quantum Wigner crystal, but no definitive evidence for this effect has been obtained despite much experimental effort over the years. Here, studying the insulating state of a 2D electron system in silicon, we have found two-threshold voltage-current characteristics with a dramatic increase in noise between the two threshold voltages. This behaviour cannot be described within existing traditional models. On the other hand, it is strikingly similar to that observed for the collective depinning of the vortex lattice in type-II superconductors. Adapting the model used for vortexes to the case of an electron solid yields good agreement with our experimental results, favouring the quantum electron solid as the origin of the low-density state.

Suggested Citation

  • Pedro Brussarski & S. Li & S. V. Kravchenko & A. A. Shashkin & M. P. Sarachik, 2018. "Transport evidence for a sliding two-dimensional quantum electron solid," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06332-9
    DOI: 10.1038/s41467-018-06332-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06332-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06332-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaining Yang & Xiang Gao & Yaning Wang & Tongyao Zhang & Yuchen Gao & Xin Lu & Shihao Zhang & Jianpeng Liu & Pingfan Gu & Zhaoping Luo & Runjie Zheng & Shimin Cao & Hanwen Wang & Xingdan Sun & Kenji W, 2023. "Unconventional correlated insulator in CrOCl-interfaced Bernal bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06332-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.