IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06253-7.html
   My bibliography  Save this article

Mapping a hidden terrane boundary in the mantle lithosphere with lamprophyres

Author

Listed:
  • Arjan H. Dijkstra

    (Plymouth University)

  • Callum Hatch

    (Plymouth University
    Natural History Museum)

Abstract

Lamprophyres represent hydrous alkaline mantle melts that are a unique source of information about the composition of continental lithosphere. Throughout southwest Britain, post-Variscan lamprophyres are (ultra)potassic with strong incompatible element enrichments. Here we show that they form two distinct groups in terms of their Sr and Nd isotopic compositions, occurring on either side of a postulated, hitherto unrecognized terrane boundary. Lamprophyres emplaced north of the boundary fall on the mantle array with εNd −1 to +1.6. Those south of the boundary are enriched in radiogenic Sr, have initial εNd values of −0.3 to −3.5, and are isotopically indistinguishable from similar-aged lamprophyres in Armorican massifs in Europe. We conclude that an Armorican terrane was juxtaposed against Avalonia well before the closure of the Variscan oceans and the formation of Pangea. The giant Cornubian Tin-Tungsten Ore Province and associated batholith can be accounted for by the fertility of Armorican lower crust and mantle lithosphere.

Suggested Citation

  • Arjan H. Dijkstra & Callum Hatch, 2018. "Mapping a hidden terrane boundary in the mantle lithosphere with lamprophyres," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06253-7
    DOI: 10.1038/s41467-018-06253-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06253-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06253-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06253-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.