IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05950-7.html
   My bibliography  Save this article

A molecular overlayer with the Fibonacci square grid structure

Author

Listed:
  • Sam Coates

    (University of Liverpool)

  • Joseph A. Smerdon

    (University of Central Lancashire)

  • Ronan McGrath

    (University of Liverpool)

  • Hem Raj Sharma

    (University of Liverpool)

Abstract

Quasicrystals differ from conventional crystals and amorphous materials in that they possess long-range order without periodicity. They exhibit orders of rotational symmetry which are forbidden in periodic crystals, such as five-, ten-, and twelve-fold, and their structures can be described with complex aperiodic tilings such as Penrose tilings and Stampfli–Gaehler tilings. Previous theoretical work explored the structure and properties of a hypothetical four-fold symmetric quasicrystal—the so-called Fibonacci square grid. Here, we show an experimental realisation of the Fibonacci square grid structure in a molecular overlayer. Scanning tunnelling microscopy reveals that fullerenes (C60) deposited on the two-fold surface of an icosahedral Al–Pd–Mn quasicrystal selectively adsorb atop Mn atoms, forming a Fibonacci square grid. The site-specific adsorption behaviour offers the potential to generate relatively simple quasicrystalline overlayer structures with tunable physical properties and demonstrates the use of molecules as a surface chemical probe to identify atomic species on similar metallic alloy surfaces.

Suggested Citation

  • Sam Coates & Joseph A. Smerdon & Ronan McGrath & Hem Raj Sharma, 2018. "A molecular overlayer with the Fibonacci square grid structure," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05950-7
    DOI: 10.1038/s41467-018-05950-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05950-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05950-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05950-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.