Author
Listed:
- Papri Sutar
(Jawaharlal Nehru Centre for Advanced Scientific Research)
- Venkata M. Suresh
(Jawaharlal Nehru Centre for Advanced Scientific Research)
- Kolleboyina Jayaramulu
(Jawaharlal Nehru Centre for Advanced Scientific Research)
- Arpan Hazra
(Jawaharlal Nehru Centre for Advanced Scientific Research)
- Tapas Kumar Maji
(Jawaharlal Nehru Centre for Advanced Scientific Research)
Abstract
The process of assembling astutely designed, well-defined metal-organic cube (MOC) into hydrogel by using a suitable molecular binder is a promising method for preparing processable functional soft materials. Here, we demonstrate charge-assisted H-bonding driven hydrogel formation from Ga3+-based anionic MOC ((Ga8(ImDC)12)12−) and molecular binders, like, ammonium ion (NH4+), N-(2-aminoethyl)-1,3-propanediamine, guanidine hydrochloride and β-alanine. The morphology of the resulting hydrogel depends upon the size, shape and geometry of the molecular binder. Hydrogel with NH4+ shows nanotubular morphology with negative surface charge and is used for gel-chromatographic separation of cationic species from anionic counterparts. Furthermore, a photo-responsive luminescent hydrogel is prepared using a cationic tetraphenylethene-based molecular binder (DATPE), which is employed as a light harvesting antenna for tuning emission colour including pure white light. This photo-responsive hydrogel is utilized for writing and preparing flexible light-emitting display.
Suggested Citation
Papri Sutar & Venkata M. Suresh & Kolleboyina Jayaramulu & Arpan Hazra & Tapas Kumar Maji, 2018.
"Binder driven self-assembly of metal-organic cubes towards functional hydrogels,"
Nature Communications, Nature, vol. 9(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05818-w
DOI: 10.1038/s41467-018-05818-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05818-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.