IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05814-0.html
   My bibliography  Save this article

Precession-band variance missing from East Asian monsoon runoff

Author

Listed:
  • S. C. Clemens

    (Brown University)

  • A. Holbourn

    (Christian-Albrechts-University)

  • Y. Kubota

    (National Museum of Nature and Science)

  • K. E. Lee

    (Korea Maritime and Ocean University)

  • Z. Liu

    (The Ohio State University)

  • G. Chen

    (Chinese Academy of Sciences)

  • A. Nelson

    (Brown University)

  • B. Fox-Kemper

    (Brown University)

Abstract

Speleothem CaCO3 δ18O is a commonly employed paleomonsoon proxy. However, inferring local rainfall amount from speleothem δ18O can be complicated due to changing source water δ18O, temperature effects, and rainout over the moisture transport path. These complications are addressed using δ18O of planktonic foraminiferal CaCO3, offshore from the Yangtze River Valley (YRV). The advantage is that the effects of global seawater δ18O and local temperature changes can be quantitatively removed, yielding a record of local seawater δ18O, a proxy that responds primarily to dilution by local precipitation and runoff. Whereas YRV speleothem δ18O is dominated by precession-band (23 ky) cyclicity, local seawater δ18O is dominated by eccentricity (100 ky) and obliquity (41 ky) cycles, with almost no precession-scale variance. These results, consistent with records outside the YRV, suggest that East Asian monsoon rainfall is more sensitive to greenhouse gas and high-latitude ice sheet forcing than to direct insolation forcing.

Suggested Citation

  • S. C. Clemens & A. Holbourn & Y. Kubota & K. E. Lee & Z. Liu & G. Chen & A. Nelson & B. Fox-Kemper, 2018. "Precession-band variance missing from East Asian monsoon runoff," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05814-0
    DOI: 10.1038/s41467-018-05814-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05814-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05814-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yukun Zheng & Hongyan Liu & Huan Yang & Hongya Wang & Wenjie Zhao & Zeyu Zhang & Miao Huang & Weihang Liu, 2022. "Decoupled Asian monsoon intensity and precipitation during glacial-interglacial transitions on the Chinese Loess Plateau," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Xusheng Li & Yuwen Zhou & Zhiyong Han & Xiaokang Yuan & Shuangwen Yi & Yuqiang Zeng & Lisha Qin & Ming Lu & Huayu Lu, 2024. "Loess deposits in the low latitudes of East Asia reveal the ~20-kyr precipitation cycle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05814-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.