IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05751-y.html
   My bibliography  Save this article

Surveying silicon nitride nanopores for glycomics and heparin quality assurance

Author

Listed:
  • Buddini Iroshika Karawdeniya

    (University of Rhode Island)

  • Y. M. Nuwan D. Y. Bandara

    (University of Rhode Island)

  • Jonathan W. Nichols

    (University of Rhode Island)

  • Robert B. Chevalier

    (University of Rhode Island)

  • Jason R. Dwyer

    (University of Rhode Island)

Abstract

Polysaccharides have key biological functions and can be harnessed for therapeutic roles, such as the anticoagulant heparin. Their complexity—e.g., >100 monosaccharides with variety in linkage and branching structure—significantly complicates analysis compared to other biopolymers such as DNA and proteins. More, and improved, analysis tools have been called for, and here we demonstrate that solid-state silicon nitride nanopore sensors and tuned sensing conditions can be used to reliably detect native polysaccharides and enzymatic digestion products, differentiate between different polysaccharides in straightforward assays, provide new experimental insights into nanopore electrokinetics, and uncover polysaccharide properties. We show that nanopore sensing allows us to easily differentiate between a clinical heparin sample and one spiked with the contaminant that caused deaths in 2008 when its presence went undetected by conventional assays. The work reported here lays a foundation to further explore polysaccharide characterization and develop assays using thin-film solid-state nanopore sensors.

Suggested Citation

  • Buddini Iroshika Karawdeniya & Y. M. Nuwan D. Y. Bandara & Jonathan W. Nichols & Robert B. Chevalier & Jason R. Dwyer, 2018. "Surveying silicon nitride nanopores for glycomics and heparin quality assurance," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05751-y
    DOI: 10.1038/s41467-018-05751-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05751-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05751-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxin Yang & Tianle Pan & Zhenming Xie & Wu Yuan & Ho-Pui Ho, 2024. "In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Parisa Bayat & Charlotte Rambaud & Bernard Priem & Matthieu Bourderioux & Mélanie Bilong & Salomé Poyer & Manuela Pastoriza-Gallego & Abdelghani Oukhaled & Jérôme Mathé & Régis Daniel, 2022. "Comprehensive structural assignment of glycosaminoglycan oligo- and polysaccharides by protein nanopore," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Minmin Li & Yuting Xiong & Yuchen Cao & Chen Zhang & Yuting Li & Hanwen Ning & Fan Liu & Han Zhou & Xiaonong Li & Xianlong Ye & Yue Pang & Jiaming Zhang & Xinmiao Liang & Guangyan Qing, 2023. "Identification of tagged glycans with a protein nanopore," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Lauren S. Lastra & Y. M. Nuwan D. Y. Bandara & Michelle Nguyen & Nasim Farajpour & Kevin J. Freedman, 2022. "On the origins of conductive pulse sensing inside a nanopore," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05751-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.