IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05616-4.html
   My bibliography  Save this article

ATP activates bestrophin ion channels through direct interaction

Author

Listed:
  • Yu Zhang

    (University of Rochester, School of Medicine and Dentistry)

  • Alec Kittredge

    (University of Rochester, School of Medicine and Dentistry)

  • Nancy Ward

    (University of Rochester, School of Medicine and Dentistry)

  • Changyi Ji

    (University of Rochester, School of Medicine and Dentistry)

  • Shoudeng Chen

    (The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai)

  • Tingting Yang

    (University of Rochester, School of Medicine and Dentistry)

Abstract

Human Bestrophin1 (hBest1) is a Ca2+-activated Cl− channel in retinal pigment epithelium (RPE) essential for retina physiology, and its mutation results in retinal degenerative diseases that have no available treatments. Here, we discover that hBest1’s channel activity in human RPE is significantly enhanced by adenosine triphosphate (ATP) in a dose-dependent manner. We further demonstrate a direct interaction between ATP and bestrophins, and map the ATP-binding motif on hBest1 to an intracellular loop adjacent to the channel activation gate. Importantly, a disease-causing mutation of hBest1 located within the ATP-binding motif, p.I201T, diminishes ATP-dependent activation of the channel in patient-derived RPE, while the corresponding mutants in bestrophin homologs display defective ATP binding and a conformational change in the ATP-binding motif. Taken together, our results identify ATP as a critical activator of bestrophins, and reveal the molecular mechanism of an hBest1 patient-specific mutation.

Suggested Citation

  • Yu Zhang & Alec Kittredge & Nancy Ward & Changyi Ji & Shoudeng Chen & Tingting Yang, 2018. "ATP activates bestrophin ion channels through direct interaction," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05616-4
    DOI: 10.1038/s41467-018-05616-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05616-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05616-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron P. Owji & Jiali Wang & Alec Kittredge & Zada Clark & Yu Zhang & Wayne A. Hendrickson & Tingting Yang, 2022. "Structures and gating mechanisms of human bestrophin anion channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jiali Wang & Aaron P. Owji & Alec Kittredge & Zada Clark & Yu Zhang & Tingting Yang, 2024. "GAD65 tunes the functions of Best1 as a GABA receptor and a neurotransmitter conducting channel," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05616-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.