IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05401-3.html
   My bibliography  Save this article

Optical imaging of metabolic dynamics in animals

Author

Listed:
  • Lingyan Shi

    (Columbia University)

  • Chaogu Zheng

    (Columbia University)

  • Yihui Shen

    (Columbia University)

  • Zhixing Chen

    (Columbia University)

  • Edilson S. Silveira

    (Columbia University)

  • Luyuan Zhang

    (Columbia University)

  • Mian Wei

    (Columbia University)

  • Chang Liu

    (Columbia University)

  • Carmen Sena-Tomas

    (Columbia University)

  • Kimara Targoff

    (Columbia University)

  • Wei Min

    (Columbia University
    Columbia University)

Abstract

Direct visualization of metabolic dynamics in living animals with high spatial and temporal resolution is essential to understanding many biological processes. Here we introduce a platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy to image in situ metabolic activities. Enzymatic incorporation of D2O-derived deuterium into macromolecules generates carbon–deuterium (C–D) bonds, which track biosynthesis in tissues and can be imaged by SRS in situ. Within the broad vibrational spectra of C–D bonds, we discover lipid-, protein-, and DNA-specific Raman shifts and develop spectral unmixing methods to obtain C–D signals with macromolecular selectivity. DO-SRS microscopy enables us to probe de novo lipogenesis in animals, image protein biosynthesis without tissue bias, and simultaneously visualize lipid and protein metabolism and reveal their different dynamics. DO-SRS microscopy, being noninvasive, universally applicable, and cost-effective, can be adapted to a broad range of biological systems to study development, tissue homeostasis, aging, and tumor heterogeneity.

Suggested Citation

  • Lingyan Shi & Chaogu Zheng & Yihui Shen & Zhixing Chen & Edilson S. Silveira & Luyuan Zhang & Mian Wei & Chang Liu & Carmen Sena-Tomas & Kimara Targoff & Wei Min, 2018. "Optical imaging of metabolic dynamics in animals," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05401-3
    DOI: 10.1038/s41467-018-05401-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05401-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05401-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeran Bai & Carolina M. Camargo & Stella M. K. Glasauer & Raymond Gifford & Xinran Tian & Andrew P. Longhini & Kenneth S. Kosik, 2024. "Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Fennell, David A. & Thomsen, Bastian, 2021. "Tourism & animal suffering: Mapping the future," Annals of Tourism Research, Elsevier, vol. 91(C).
    3. Jian Zhao & Alex Matlock & Hongbo Zhu & Ziqi Song & Jiabei Zhu & Biao Wang & Fukai Chen & Yuewei Zhan & Zhicong Chen & Yihong Xu & Xingchen Lin & Lei Tian & Ji-Xin Cheng, 2022. "Bond-selective intensity diffraction tomography," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yueli Yang & Xueyang Bai & Fanghao Hu, 2024. "Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Wenxu Zhang & Yajuan Li & Anthony A. Fung & Zhi Li & Hongje Jang & Honghao Zha & Xiaoping Chen & Fangyuan Gao & Jane Y. Wu & Huaxin Sheng & Junjie Yao & Dorota Skowronska-Krawczyk & Sanjay Jain & Ling, 2024. "Multi-molecular hyperspectral PRM-SRS microscopy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05401-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.