IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05332-z.html
   My bibliography  Save this article

Designing with living systems in the synthetic yeast project

Author

Listed:
  • Erika Szymanski

    (University of Edinburgh, Old Surgeons’ Hall, High School Yards)

  • Jane Calvert

    (University of Edinburgh, Old Surgeons’ Hall, High School Yards)

Abstract

Synthetic biology is challenged by the complexity and the unpredictability of living systems. While one response to this complexity involves simplifying cells to create more fully specified systems, another approach utilizes directed evolution, releasing some control and using unpredictable change to achieve design goals. Here we discuss SCRaMbLE, employed in the synthetic yeast project, as an example of synthetic biology design through working with living systems. SCRaMbLE is a designed tool without being a design tool, harnessing the activities of the yeast rather than relying entirely on scientists’ deliberate choices. We suggest that directed evolution at the level of the whole organism allows scientists and microorganisms to “collaborate” to achieve design goals, suggesting new directions for synthetic biology.

Suggested Citation

  • Erika Szymanski & Jane Calvert, 2018. "Designing with living systems in the synthetic yeast project," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05332-z
    DOI: 10.1038/s41467-018-05332-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05332-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05332-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akshay J. Maheshwari & Jonathan Calles & Sean K. Waterton & Drew Endy, 2023. "Engineering tRNA abundances for synthetic cellular systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Tiantian Chang & Weichao Ding & Shirui Yan & Yun Wang & Haoling Zhang & Yu Zhang & Zhi Ping & Huiming Zhang & Yijian Huang & Jiahui Zhang & Dan Wang & Wenwei Zhang & Xun Xu & Yue Shen & Xian Fu, 2023. "A robust yeast biocontainment system with two-layered regulation switch dependent on unnatural amino acid," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Li Cheng & Shijun Zhao & Tianyi Li & Sha Hou & Zhouqing Luo & Jinsheng Xu & Wenfei Yu & Shuangying Jiang & Marco Monti & Daniel Schindler & Weimin Zhang & Chunhui Hou & Yingxin Ma & Yizhi Cai & Jef D., 2024. "Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05332-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.