IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05274-6.html
   My bibliography  Save this article

A positive feedback loop bi-stably activates fibroblasts

Author

Listed:
  • So-Young Yeo

    (Sungkyunkwan University)

  • Keun-Woo Lee

    (Sungkyunkwan University)

  • Dongkwan Shin

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Sugyun An

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Kwang-Hyun Cho

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Seok-Hyung Kim

    (Sungkyunkwan University
    Sungkyunkwan University School of Medicine
    Sungkyunkwan University School of Medicine)

Abstract

Although fibroblasts are dormant in normal tissue, they exhibit explosive activation during wound healing and perpetual activation in pathologic fibrosis and cancer stroma. The key regulatory network controlling these fibroblast dynamics is still unknown. Here, we report that Twist1, a key regulator of cancer-associated fibroblasts, directly upregulates Prrx1, which, in turn, increases the expression of Tenascin-C (TNC). TNC also increases Twist1 expression, consequently forming a Twist1-Prrx1-TNC positive feedback loop (PFL). Systems biology studies reveal that the Twist1-Prrx1-TNC PFL can function as a bistable ON/OFF switch and regulates fibroblast activation. This PFL can be irreversibly activated under pathologic conditions, leading to perpetual fibroblast activation. Sustained activation of the Twist1-Prrx1-TNC PFL reproduces fibrotic nodules similar to idiopathic pulmonary fibrosis in vivo and is implicated in fibrotic disease and cancer stroma. Considering that this PFL is specific to activated fibroblasts, Twist1-Prrx1-TNC PFL may be a fibroblast-specific therapeutic target to deprogram perpetually activated fibroblasts.

Suggested Citation

  • So-Young Yeo & Keun-Woo Lee & Dongkwan Shin & Sugyun An & Kwang-Hyun Cho & Seok-Hyung Kim, 2018. "A positive feedback loop bi-stably activates fibroblasts," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05274-6
    DOI: 10.1038/s41467-018-05274-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05274-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05274-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed, Mahdisoltani & Ramin, Golestanian, 2023. "Nonequilibrium phenomena in driven and active Coulomb field theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 631(C).
    2. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Sébastien Thériault & Zhonglin Li & Erik Abner & Jian’an Luan & Hasanga D. Manikpurage & Ursula Houessou & Pardis Zamani & Mewen Briend & Dominique K. Boudreau & Nathalie Gaudreault & Lily Frenette & , 2024. "Integrative genomic analyses identify candidate causal genes for calcific aortic valve stenosis involving tissue-specific regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Keun-Woo Lee & So-Young Yeo & Jeong-Ryeol Gong & Ok-Jae Koo & Insuk Sohn & Woo Yong Lee & Hee Cheol Kim & Seong Hyeon Yun & Yong Beom Cho & Mi-Ae Choi & Sugyun An & Juhee Kim & Chang Ohk Sung & Kwang-, 2022. "PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression," Nature Communications, Nature, vol. 13(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05274-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.