IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05160-1.html
   My bibliography  Save this article

Ratiometric nanothermometer in vivo based on triplet sensitized upconversion

Author

Listed:
  • Ming Xu

    (Fudan University)

  • Xianmei Zou

    (Fudan University)

  • Qianqian Su

    (Fudan University)

  • Wei Yuan

    (Fudan University)

  • Cong Cao

    (Fudan University)

  • Qiuhong Wang

    (Fudan University)

  • Xingjun Zhu

    (Fudan University)

  • Wei Feng

    (Fudan University)

  • Fuyou Li

    (Fudan University)

Abstract

Temperature is an essential factor that counts for living systems where complicated vital activities are usually temperature dependent. In vivo temperature mapping based on non-contact optical approach will be beneficial for revealing the physiological phenomena behind with minimized influence to the organism. Herein, a highly thermal-sensitive upconversion system based on triplet–triplet annihilation (TTA) mechanism is pioneered to indicate body temperature variation sensitively over the physiological temperature range. The temperature-insensitive NaYF4: Nd nanophosphors with NIR emission was incorporated into the temperature-responsive TTA-upconversion system to serve as an internal calibration unit. Consequently, a ratiometric thermometer capable of accurately monitoring the temperature changes in vivo was developed with high thermal sensitivity (~7.1% K−1) and resolution (~0.1 K).

Suggested Citation

  • Ming Xu & Xianmei Zou & Qianqian Su & Wei Yuan & Cong Cao & Qiuhong Wang & Xingjun Zhu & Wei Feng & Fuyou Li, 2018. "Ratiometric nanothermometer in vivo based on triplet sensitized upconversion," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05160-1
    DOI: 10.1038/s41467-018-05160-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05160-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05160-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Zeng & Ling Huang & Wenhai Lin & Lin-Han Jiang & Gang Han, 2023. "Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yukai Wu & Fang Li & Yanan Wu & Hao Wang & Liangtao Gu & Jieying Zhang & Yukun Qi & Lingkai Meng & Na Kong & Yingjie Chai & Qian Hu & Zhenyu Xing & Wuwei Ren & Fuyou Li & Xingjun Zhu, 2024. "Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Pengqing Bi & Tao Zhang & Yuanyuan Guo & Jianqiu Wang & Xian Wei Chua & Zhihao Chen & Wei Peng Goh & Changyun Jiang & Elbert E. M. Chia & Jianhui Hou & Le Yang, 2024. "Donor-acceptor bulk-heterojunction sensitizer for efficient solid-state infrared-to-visible photon up-conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Enhai Song & Meihua Chen & Zitao Chen & Yayun Zhou & Weijie Zhou & Hong-Tao Sun & Xianfeng Yang & Jiulin Gan & Shi Ye & Qinyuan Zhang, 2022. "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05160-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.