IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05146-z.html
   My bibliography  Save this article

Different population dynamics in the supplementary motor area and motor cortex during reaching

Author

Listed:
  • A. H. Lara

    (Columbia University Medical Center)

  • J. P. Cunningham

    (Columbia University
    Columbia University
    Columbia University
    Columbia University Medical Center)

  • M. M. Churchland

    (Columbia University Medical Center
    Columbia University
    Columbia University
    Columbia University Medical Center)

Abstract

Neural populations perform computations through their collective activity. Different computations likely require different population-level dynamics. We leverage this assumption to examine neural responses recorded from the supplementary motor area (SMA) and motor cortex. During visually guided reaching, the respective roles of these areas remain unclear; neurons in both areas exhibit preparation-related activity and complex patterns of movement-related activity. To explore population dynamics, we employ a novel “hypothesis-guided” dimensionality reduction approach. This approach reveals commonalities but also stark differences: linear population dynamics, dominated by rotations, are prominent in motor cortex but largely absent in SMA. In motor cortex, the observed dynamics produce patterns resembling muscle activity. Conversely, the non-rotational patterns in SMA co-vary with cues regarding when movement should be initiated. Thus, while SMA and motor cortex display superficially similar single-neuron responses during visually guided reaching, their different population dynamics indicate they are likely performing quite different computations.

Suggested Citation

  • A. H. Lara & J. P. Cunningham & M. M. Churchland, 2018. "Different population dynamics in the supplementary motor area and motor cortex during reaching," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05146-z
    DOI: 10.1038/s41467-018-05146-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05146-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05146-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalton D. Moore & Jason N. MacLean & Jeffrey D. Walker & Nicholas G. Hatsopoulos, 2024. "A dynamic subset of network interactions underlies tuning to natural movements in marmoset sensorimotor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05146-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.