IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05019-5.html
   My bibliography  Save this article

Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours

Author

Listed:
  • Yipu Liu

    (Jilin University)

  • Xiao Liang

    (Jilin University)

  • Lin Gu

    (Chinese Academy of Sciences)

  • Yu Zhang

    (Beihang University)

  • Guo-Dong Li

    (Jilin University)

  • Xiaoxin Zou

    (Jilin University)

  • Jie-Sheng Chen

    (Shanghai Jiao Tong University)

Abstract

Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities.

Suggested Citation

  • Yipu Liu & Xiao Liang & Lin Gu & Yu Zhang & Guo-Dong Li & Xiaoxin Zou & Jie-Sheng Chen, 2018. "Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05019-5
    DOI: 10.1038/s41467-018-05019-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05019-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05019-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanwu Lei & Wenbin Cai & Yifei Rao & Kuan Wang & Yuyuan Jiang & Yang Liu & Xu Jin & Jianming Li & Zhengxing Lv & Shuhong Jiao & Wenhua Zhang & Pengfei Yan & Shuo Zhang & Ruiguo Cao, 2022. "Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05019-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.