IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04967-2.html
   My bibliography  Save this article

Prolonged abstinence from cocaine or morphine disrupts separable valuations during decision conflict

Author

Listed:
  • Brian M. Sweis

    (University of Minnesota
    University of Minnesota)

  • A. David Redish

    (University of Minnesota)

  • Mark J. Thomas

    (University of Minnesota
    University of Minnesota)

Abstract

Neuroeconomic theories propose changes in decision making drive relapse in recovering drug addicts, resulting in continued drug use despite stated wishes not to. Such conflict is thought to arise from multiple valuation systems dependent on separable neural components, yet many neurobiology of addiction studies employ only simple tests of value. Here, we tested in mice how prolonged abstinence from different drugs affects behavior in a neuroeconomic foraging task that reveals multiple tests of value. Abstinence from repeated cocaine and morphine disrupts separable decision-making processes. Cocaine alters deliberation-like behavior prior to choosing a preferred though economically unfavorable offer, while morphine disrupts re-evaluations after rapid initial decisions. These findings suggest that different drugs have long-lasting effects precipitating distinct decision-making vulnerabilities. Our approach can guide future refinement of decision-making behavioral paradigms and highlights how grossly similar behavioral maladaptations may mask multiple underlying, parallel, and dissociable processes that treatments for addiction could potentially target.

Suggested Citation

  • Brian M. Sweis & A. David Redish & Mark J. Thomas, 2018. "Prolonged abstinence from cocaine or morphine disrupts separable valuations during decision conflict," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04967-2
    DOI: 10.1038/s41467-018-04967-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04967-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04967-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04967-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.