IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04726-3.html
   My bibliography  Save this article

Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow

Author

Listed:
  • Chunliang Xu

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

  • Xin Gao

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

  • Qiaozhi Wei

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

  • Fumio Nakahara

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

  • Samuel E. Zimmerman

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

  • Jessica Mar

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

  • Paul S. Frenette

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

Abstract

Endothelial cells (ECs) contribute to haematopoietic stem cell (HSC) maintenance in bone marrow, but the differential contributions of EC subtypes remain unknown, owing to the lack of methods to separate with high purity arterial endothelial cells (AECs) from sinusoidal endothelial cells (SECs). Here we show that the combination of podoplanin (PDPN) and Sca-1 expression distinguishes AECs (CD45− Ter119− Sca-1bright PDPN−) from SECs (CD45− Ter119− Sca-1dim PDPN+). PDPN can be substituted for antibodies against the adhesion molecules ICAM1 or E-selectin. Unexpectedly, prospective isolation reveals that AECs secrete nearly all detectable EC-derived stem cell factors (SCF). Genetic deletion of Scf in AECs, but not SECs, significantly reduced functional HSCs. Lineage-tracing analyses suggest that AECs and SECs self-regenerate independently after severe genotoxic insults, indicating the persistence of, and recovery from, radio-resistant pre-specified EC precursors. AEC-derived SCF also promotes HSC recovery after myeloablation. These results thus uncover heterogeneity in the contribution of ECs in stem cell niches.

Suggested Citation

  • Chunliang Xu & Xin Gao & Qiaozhi Wei & Fumio Nakahara & Samuel E. Zimmerman & Jessica Mar & Paul S. Frenette, 2018. "Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04726-3
    DOI: 10.1038/s41467-018-04726-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04726-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04726-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joschka Heil & Victor Olsavszky & Katrin Busch & Kay Klapproth & Carolina Torre & Carsten Sticht & Kajetan Sandorski & Johannes Hoffmann & Hiltrud Schönhaber & Johanna Zierow & Manuel Winkler & Christ, 2021. "Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Taghreed Hirz & Shenglin Mei & Hirak Sarkar & Youmna Kfoury & Shulin Wu & Bronte M. Verhoeven & Alexander O. Subtelny & Dimitar V. Zlatev & Matthew W. Wszolek & Keyan Salari & Evan Murray & Fei Chen &, 2023. "Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04726-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.