IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04725-4.html
   My bibliography  Save this article

Inferring collective dynamical states from widely unobserved systems

Author

Listed:
  • Jens Wilting

    (Max-Planck-Institute for Dynamics and Self-Organization)

  • Viola Priesemann

    (Max-Planck-Institute for Dynamics and Self-Organization
    Bernstein-Center for Computational Neuroscience)

Abstract

When assessing spatially extended complex systems, one can rarely sample the states of all components. We show that this spatial subsampling typically leads to severe underestimation of the risk of instability in systems with propagating events. We derive a subsampling-invariant estimator, and demonstrate that it correctly infers the infectiousness of various diseases under subsampling, making it particularly useful in countries with unreliable case reports. In neuroscience, recordings are strongly limited by subsampling. Here, the subsampling-invariant estimator allows to revisit two prominent hypotheses about the brain’s collective spiking dynamics: asynchronous-irregular or critical. We identify consistently for rat, cat, and monkey a state that combines features of both and allows input to reverberate in the network for hundreds of milliseconds. Overall, owing to its ready applicability, the novel estimator paves the way to novel insight for the study of spatially extended dynamical systems.

Suggested Citation

  • Jens Wilting & Viola Priesemann, 2018. "Inferring collective dynamical states from widely unobserved systems," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04725-4
    DOI: 10.1038/s41467-018-04725-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04725-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04725-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yiling & Katharine Shapcott & Alina Peter & Johanna Klon-Lipok & Huang Xuhui & Andreea Lazar & Wolf Singer, 2023. "Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Contreras, Sebastian & Oróstica, Karen Y. & Daza-Sanchez, Anamaria & Wagner, Joel & Dönges, Philipp & Medina-Ortiz, David & Jara, Matias & Verdugo, Ricardo & Conca, Carlos & Priesemann, Viola & Oliver, 2023. "Model-based assessment of sampling protocols for infectious disease genomic surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Benoit Duchet & Filippo Ghezzi & Gihan Weerasinghe & Gerd Tinkhauser & Andrea A Kühn & Peter Brown & Christian Bick & Rafal Bogacz, 2021. "Average beta burst duration profiles provide a signature of dynamical changes between the ON and OFF medication states in Parkinson’s disease," PLOS Computational Biology, Public Library of Science, vol. 17(7), pages 1-42, July.
    4. Lucas Rudelt & Daniel González Marx & Michael Wibral & Viola Priesemann, 2021. "Embedding optimization reveals long-lasting history dependence in neural spiking activity," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-51, June.
    5. Annika Hagemann & Jens Wilting & Bita Samimizad & Florian Mormann & Viola Priesemann, 2021. "Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-18, March.
    6. F P Spitzner & J Dehning & J Wilting & A Hagemann & J P. Neto & J Zierenberg & V Priesemann, 2021. "MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-21, April.
    7. Forough Habibollahi & Brett J. Kagan & Anthony N. Burkitt & Chris French, 2023. "Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Jiawei Xu & Yincai Tang, 2021. "Bayesian Framework for Multi-Wave COVID-19 Epidemic Analysis Using Empirical Vaccination Data," Mathematics, MDPI, vol. 10(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04725-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.