IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04632-8.html
   My bibliography  Save this article

Network biology discovers pathogen contact points in host protein-protein interactomes

Author

Listed:
  • Hadia Ahmed

    (University of Alabama at Birmingham)

  • T. C. Howton

    (University of Alabama at Birmingham)

  • Yali Sun

    (University of Alabama at Birmingham)

  • Natascha Weinberger

    (Vienna Biocenter (VBC))

  • Youssef Belkhadir

    (Vienna Biocenter (VBC))

  • M. Shahid Mukhtar

    (University of Alabama at Birmingham
    University of Alabama at Birmingham)

Abstract

In all organisms, major biological processes are controlled by complex protein–protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1MAIN). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSILRR) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.

Suggested Citation

  • Hadia Ahmed & T. C. Howton & Yali Sun & Natascha Weinberger & Youssef Belkhadir & M. Shahid Mukhtar, 2018. "Network biology discovers pathogen contact points in host protein-protein interactomes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04632-8
    DOI: 10.1038/s41467-018-04632-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04632-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04632-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Wang, Longyun & Mou, Jianhong & Dai, Bitao & Tan, Suoyi & Cai, Mengsi & Chen, Huan & Jin, Zhen & Sun, Guiquan & Lu, Xin, 2024. "Influential nodes identification based on hierarchical structure," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04632-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.