Author
Listed:
- Rebecca L. Dally
(University of California
Boston College)
- Yang Zhao
(National Institute of Standards and Technology
University of Maryland)
- Zhijun Xu
(National Institute of Standards and Technology
University of Maryland)
- Robin Chisnell
(National Institute of Standards and Technology)
- M. B. Stone
(Oak Ridge National Laboratory)
- Jeffrey W. Lynn
(National Institute of Standards and Technology)
- Leon Balents
(University of California, Santa Barbara)
- Stephen D. Wilson
(University of California)
Abstract
Amplitude modes arising from symmetry breaking in materials are of broad interest in condensed matter physics. These modes reflect an oscillation in the amplitude of a complex order parameter, yet are typically unstable and decay into oscillations of the order parameter’s phase. This renders stable amplitude modes rare, and exotic effects in quantum antiferromagnets have historically provided a realm for their detection. Here we report an alternate route to realizing amplitude modes in magnetic materials by demonstrating that an antiferromagnet on a two-dimensional anisotropic triangular lattice (α-Na0.9MnO2) exhibits a long-lived, coherent oscillation of its staggered magnetization field. Our results show that geometric frustration of Heisenberg spins with uniaxial single-ion anisotropy can renormalize the interactions of a dense two-dimensional network of moments into largely decoupled, one-dimensional chains that manifest a longitudinally polarized-bound state. This bound state is driven by the Ising-like anisotropy inherent to the Mn3+ ions of this compound.
Suggested Citation
Rebecca L. Dally & Yang Zhao & Zhijun Xu & Robin Chisnell & M. B. Stone & Jeffrey W. Lynn & Leon Balents & Stephen D. Wilson, 2018.
"Amplitude mode in the planar triangular antiferromagnet Na0.9MnO2,"
Nature Communications, Nature, vol. 9(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04601-1
DOI: 10.1038/s41467-018-04601-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04601-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.