IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04595-w.html
   My bibliography  Save this article

Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context

Author

Listed:
  • Rotem Ben-Shachar

    (Duke University
    Duke University
    University of California
    University of California)

  • Katia Koelle

    (Duke University
    Emory University)

Abstract

An extensive body of theory addresses the topic of pathogen virulence evolution, yet few studies have empirically demonstrated the presence of fitness trade-offs that would select for intermediate virulence. Here we show the presence of transmission-clearance trade-offs in dengue virus using viremia measurements. By fitting a within-host model to these data, we further find that the interaction between dengue and the host immune response can account for the observed trade-offs. Finally, we consider dengue virulence evolution when selection acts on the virus’s production rate. By combining within-host model simulations with empirical findings on how host viral load affects human-to-mosquito transmission success, we show that the virus’s transmission potential is maximized at production rates associated with intermediate virulence and that the optimal production rate critically depends on dengue’s epidemiological context. These results indicate that long-term changes in dengue’s global distribution impact the invasion and spread of virulent dengue virus genotypes.

Suggested Citation

  • Rotem Ben-Shachar & Katia Koelle, 2018. "Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04595-w
    DOI: 10.1038/s41467-018-04595-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04595-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04595-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatriz Acuña Hidalgo & Luís M. Silva & Mathias Franz & Roland R. Regoes & Sophie A. O. Armitage, 2022. "Decomposing virulence to understand bacterial clearance in persistent infections," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kathryn A. Hanley & Hélène Cecilia & Sasha R. Azar & Brett A. Moehn & Jordan T. Gass & Natalia I. Oliveira da Silva & Wanqin Yu & Ruimei Yun & Benjamin M. Althouse & Nikos Vasilakis & Shannan L. Rossi, 2024. "Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04595-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.