IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04557-2.html
   My bibliography  Save this article

Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR

Author

Listed:
  • Yaxin Dai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Aili Zhang

    (Cleveland Clinic Lerner Research Institute)

  • Shan Shan

    (Chinese Academy of Sciences)

  • Zihua Gong

    (Cleveland Clinic Lerner Research Institute)

  • Zheng Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

P53-binding protein 1 (53BP1) regulates the double-strand break (DSB) repair pathway choice. A recently identified 53BP1-binding protein Tudor-interacting repair regulator (TIRR) modulates the access of 53BP1 to DSBs by masking the H4K20me2 binding surface on 53BP1, but the underlying mechanism remains unclear. Here we report the 1.76-Å crystal structure of TIRR in complex with 53BP1 tandem Tudor domain. We demonstrate that the N-terminal region (residues 10–24) and the L8-loop of TIRR interact with 53BP1 Tudor through three loops (L1, L3, and L1′). TIRR recognition blocks H4K20me2 binding to 53BP1 Tudor and modulates 53BP1 functions in vivo. Structure comparisons identify a TIRR histidine (H106) that is absent from the TIRR homolog Nudt16, but essential for 53BP1 Tudor binding. Remarkably, mutations mimicking TIRR binding modules restore the disrupted binding of Nudt16-53BP1 Tudor. Our studies elucidate the mechanism by which TIRR recognizes 53BP1 Tudor and functions as a cellular inhibitor of the histone methyl-lysine readers.

Suggested Citation

  • Yaxin Dai & Aili Zhang & Shan Shan & Zihua Gong & Zheng Zhou, 2018. "Structural basis for recognition of 53BP1 tandem Tudor domain by TIRR," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04557-2
    DOI: 10.1038/s41467-018-04557-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04557-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04557-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susan Kilgas & Aleem Syed & Patrick Toolan-Kerr & Michelle L. Swift & Shrabasti Roychoudhury & Aniruddha Sarkar & Sarah Wilkins & Mikayla Quigley & Anna R. Poetsch & Maria Victoria Botuyan & Gaofeng C, 2024. "NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Gaofeng Cui & Maria Victoria Botuyan & Pascal Drané & Qi Hu & Benoît Bragantini & James R. Thompson & David J. Schuller & Alexandre Detappe & Michael T. Perfetti & Lindsey I. James & Stephen V. Frye &, 2023. "An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sameer Bikram Shah & Youhang Li & Shibo Li & Qing Hu & Tong Wu & Yanmeng Shi & Tran Nguyen & Isaac Ive & Linda Shi & Hailong Wang & Xiaohua Wu, 2024. "53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR)," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Qi Ye & Jian Ma & Zixi Wang & Lei Li & Tianjie Liu & Bin Wang & Lizhe Zhu & Yuzeshi Lei & Shan Xu & Ke Wang & Yanlin Jian & Bohan Ma & Yizeng Fan & Jing Liu & Yang Gao & Haojie Huang & Lei Li, 2024. "DTX3L-mediated TIRR nuclear export and degradation regulates DNA repair pathway choice and PARP inhibitor sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04557-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.