IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04482-4.html
   My bibliography  Save this article

Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits

Author

Listed:
  • F. Merrikh Bayat

    (University of California)

  • M. Prezioso

    (University of California)

  • B. Chakrabarti

    (University of California)

  • H. Nili

    (University of California)

  • I. Kataeva

    (DENSO CORP)

  • D. Strukov

    (University of California)

Abstract

The progress in the field of neural computation hinges on the use of hardware more efficient than the conventional microprocessors. Recent works have shown that mixed-signal integrated memristive circuits, especially their passive (0T1R) variety, may increase the neuromorphic network performance dramatically, leaving far behind their digital counterparts. The major obstacle, however, is immature memristor technology so that only limited functionality has been reported. Here we demonstrate operation of one-hidden layer perceptron classifier entirely in the mixed-signal integrated hardware, comprised of two passive 20 × 20 metal-oxide memristive crossbar arrays, board-integrated with discrete conventional components. The demonstrated network, whose hardware complexity is almost 10× higher as compared to previously reported functional classifier circuits based on passive memristive crossbars, achieves classification fidelity within 3% of that obtained in simulations, when using ex-situ training. The successful demonstration was facilitated by improvements in fabrication technology of memristors, specifically by lowering variations in their I–V characteristics.

Suggested Citation

  • F. Merrikh Bayat & M. Prezioso & B. Chakrabarti & H. Nili & I. Kataeva & D. Strukov, 2018. "Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04482-4
    DOI: 10.1038/s41467-018-04482-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04482-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04482-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Woo Sik & Kim, Donguk & Yang, Tae Jun & Chae, Inseok & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Electrode-dependent electrical switching characteristics of InGaZnO memristor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Liu, Yang & Chen, Liping & Wu, Xiaobo & Lopes, António M. & Cui, Fengqi & Chen, YangQuan, 2023. "Theoretical analysis and experimental verification of fractional-order RC cobweb circuit network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Lee, Geun Ho & Kim, Tae-Hyeon & Song, Min Suk & Park, Jinwoo & Kim, Sungjoon & Hong, Kyungho & Kim, Yoon & Park, Byung-Gook & Kim, Hyungjin, 2022. "Effect of weight overlap region on neuromorphic system with memristive synaptic devices," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Shchanikov, Sergey & Zuev, Anton & Bordanov, Ilya & Danilin, Sergey & Lukoyanov, Vitaly & Korolev, Dmitry & Belov, Alexey & Pigareva, Yana & Gladkov, Arseny & Pimashkin, Alexey & Mikhaylov, Alexey & K, 2021. "Designing a bidirectional, adaptive neural interface incorporating machine learning capabilities and memristor-enhanced hardware," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04482-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.