IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04293-7.html
   My bibliography  Save this article

Indirect excitons in van der Waals heterostructures at room temperature

Author

Listed:
  • E. V. Calman

    (University of California at San Diego)

  • M. M. Fogler

    (University of California at San Diego)

  • L. V. Butov

    (University of California at San Diego)

  • S. Hu

    (University of Manchester)

  • A. Mishchenko

    (University of Manchester)

  • A. K. Geim

    (University of Manchester)

Abstract

Indirect excitons (IXs) are explored both for studying quantum Bose gases in semiconductor materials and for the development of excitonic devices. IXs were extensively studied in III–V and II–VI semiconductor heterostructures where IX range of existence has been limited to low temperatures. Here, we present the observation of IXs at room temperature in van der Waals transition metal dichalcogenide (TMD) heterostructures. This is achieved in TMD heterostructures based on monolayers of MoS2 separated by atomically thin hexagonal boron nitride. The IXs we realize in the TMD heterostructure have lifetimes orders of magnitude longer than lifetimes of direct excitons in single-layer TMD and their energy is gate controlled. The realization of IXs at room temperature establishes the TMD heterostructures as a material platform both for a field of high-temperature quantum Bose gases of IXs and for a field of high-temperature excitonic devices.

Suggested Citation

  • E. V. Calman & M. M. Fogler & L. V. Butov & S. Hu & A. Mishchenko & A. K. Geim, 2018. "Indirect excitons in van der Waals heterostructures at room temperature," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04293-7
    DOI: 10.1038/s41467-018-04293-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04293-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04293-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruishi Qi & Andrew Y. Joe & Zuocheng Zhang & Yongxin Zeng & Tiancheng Zheng & Qixin Feng & Jingxu Xie & Emma Regan & Zheyu Lu & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Michael F. Cromm, 2023. "Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Simon Raiber & Paulo E. Faria Junior & Dennis Falter & Simon Feldl & Petter Marzena & Kenji Watanabe & Takashi Taniguchi & Jaroslav Fabian & Christian Schüller, 2022. "Ultrafast pseudospin quantum beats in multilayer WSe2 and MoSe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Zhiwen Zhou & E. A. Szwed & D. J. Choksy & L. H. Fowler-Gerace & L. V. Butov, 2024. "Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04293-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.