IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04289-3.html
   My bibliography  Save this article

Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements

Author

Listed:
  • Tal Heilpern

    (Argonne National Laboratory)

  • Manoj Manjare

    (Emory University)

  • Alexander O. Govorov

    (Ohio University)

  • Gary P. Wiederrecht

    (Argonne National Laboratory)

  • Stephen K. Gray

    (Argonne National Laboratory)

  • Hayk Harutyunyan

    (Emory University)

Abstract

Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

Suggested Citation

  • Tal Heilpern & Manoj Manjare & Alexander O. Govorov & Gary P. Wiederrecht & Stephen K. Gray & Hayk Harutyunyan, 2018. "Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04289-3
    DOI: 10.1038/s41467-018-04289-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04289-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04289-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Zhang & Wei Li & Ruixuan Zhao & Peizhe Tang & Jie Zhao & Guorong Wu & Xin Chen & Mingjun Hu & Kaijun Yuan & Jiebo Li & Xueming Yang, 2024. "Real-time observation of two distinctive non-thermalized hot electron dynamics at MXene/molecule interfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Can O. Karaman & Anton Yu. Bykov & Fatemeh Kiani & Giulia Tagliabue & Anatoly V. Zayats, 2024. "Ultrafast hot-carrier dynamics in ultrathin monocrystalline gold," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Judit Budai & Zsuzsanna Pápa & Péter Petrik & Péter Dombi, 2022. "Ultrasensitive probing of plasmonic hot electron occupancies," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Robert Lemasters & Manoj Manjare & Ryan Freeman & Feng Wang & Luka Guy Pierce & Gordon Hua & Sergei Urazhdin & Hayk Harutyunyan, 2024. "Non-thermal emission in gap-mode plasmon photoluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04289-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.