IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04270-0.html
   My bibliography  Save this article

Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling

Author

Listed:
  • Pragya Goel

    (University of Southern California
    University of Southern California)

  • Dion Dickman

    (University of Southern California)

Abstract

Synapses are constructed with the stability to last a lifetime, yet sufficiently flexible to adapt during injury. Although fundamental pathways that mediate intrinsic responses to neuronal injury have been defined, less is known about how synaptic partners adapt. We have investigated responses in the postsynaptic cell to presynaptic activation of the injury-related Dual Leucine Zipper Kinase pathway at the Drosophila neuromuscular junction. We find that the postsynaptic compartment reduces neurotransmitter receptor levels, thus depressing synaptic strength. Interestingly, this diminished state is stabilized through distinct modulations to two postsynaptic homeostatic signaling systems. First, a retrograde response normally triggered by reduced receptor levels is silenced, preventing a compensatory enhancement in presynaptic neurotransmitter release. However, when global presynaptic release is attenuated, a postsynaptic receptor scaling mechanism persists to adaptively stabilize this diminished neurotransmission state. Thus, the homeostatic set point of synaptic strength is recalibrated to a reduced state as synapses acclimate to injury.

Suggested Citation

  • Pragya Goel & Dion Dickman, 2018. "Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04270-0
    DOI: 10.1038/s41467-018-04270-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04270-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04270-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yupu Wang & Ruiling Zhang & Sihao Huang & Parisa Tajalli Tehrani Valverde & Meike Lobb-Rabe & James Ashley & Lalanti Venkatasubramanian & Robert A. Carrillo, 2023. "Glial Draper signaling triggers cross-neuron plasticity in bystander neurons after neuronal cell death in Drosophila," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Sarah Perry & Yifu Han & Chengjie Qiu & Chun Chien & Pragya Goel & Samantha Nishimura & Manisha Sajnani & Andreas Schmid & Stephan J. Sigrist & Dion Dickman, 2022. "A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04270-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.