IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04251-3.html
   My bibliography  Save this article

Exceptional point engineered glass slide for microscopic thermal mapping

Author

Listed:
  • Han Zhao

    (University of Pennsylvania)

  • Zhaowei Chen

    (The State University of New York at Buffalo)

  • Ruogang Zhao

    (The State University of New York at Buffalo)

  • Liang Feng

    (University of Pennsylvania)

Abstract

Thermal sensing with fine spatial resolution is important to the study of many scientific areas. While modern microscopy systems allow optical detection at high spatial resolution, their intrinsic functions are mainly focused on imaging but limited in detecting other physical parameters, for example, mapping thermal variations. Here, with a coating of an optical exceptional point structure, we demonstrate a low-cost but efficient multifunctional microscope slide, supporting real-time monitoring and mapping of temperature distribution and heat transport in addition to conventional microscopic imaging. The square-root dependency associated with an exceptional point leads to enhanced thermal sensitivity for precise temperature measurement. With a microscale resolution, real-time thermal mapping is conducted, showing dynamic temperature variation in a spatially defined area. Our strategy of integrating low-cost and efficient optical sensing technologies on a conventional glass slide enables simultaneous detection of multiple environmental parameters, producing improved experimental control at the microscale in various scientific disciplines.

Suggested Citation

  • Han Zhao & Zhaowei Chen & Ruogang Zhao & Liang Feng, 2018. "Exceptional point engineered glass slide for microscopic thermal mapping," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04251-3
    DOI: 10.1038/s41467-018-04251-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04251-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04251-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04251-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.