IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04224-6.html
   My bibliography  Save this article

Air separation with graphene mediated by nanowindow-rim concerted motion

Author

Listed:
  • Fernando Vallejos-Burgos

    (Shinshu University)

  • François-Xavier Coudert

    (CNRS, Institut de Recherche de Chimie Paris)

  • Katsumi Kaneko

    (Shinshu University)

Abstract

Nanoscale windows in graphene (nanowindows) have the ability to switch between open and closed states, allowing them to become selective, fast, and energy-efficient membranes for molecular separations. These special pores, or nanowindows, are not electrically neutral due to passivation of the carbon edges under ambient conditions, becoming flexible atomic frameworks with functional groups along their rims. Through computer simulations of oxygen, nitrogen, and argon permeation, here we reveal the remarkable nanowindow behavior at the atomic scale: flexible nanowindows have a thousand times higher permeability than conventional membranes and at least twice their selectivity for oxygen/nitrogen separation. Also, weakly interacting functional groups open or close the nanowindow with their thermal vibrations to selectively control permeation. This selective fast permeation of oxygen, nitrogen, and argon in very restricted nanowindows suggests alternatives for future air separation membranes.

Suggested Citation

  • Fernando Vallejos-Burgos & François-Xavier Coudert & Katsumi Kaneko, 2018. "Air separation with graphene mediated by nanowindow-rim concerted motion," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04224-6
    DOI: 10.1038/s41467-018-04224-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04224-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04224-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Z. Sun & M. Yagmurcukardes & R. Zhang & W. J. Kuang & M. Lozada-Hidalgo & B. L. Liu & H.-M. Cheng & F. C. Wang & F. M. Peeters & I. V. Grigorieva & A. K. Geim, 2021. "Exponentially selective molecular sieving through angstrom pores," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Hayato Otsuka & Koki Urita & Nobutaka Honma & Takashi Kimuro & Yasushi Amako & Radovan Kukobat & Teresa J. Bandosz & Junzo Ukai & Isamu Moriguchi & Katsumi Kaneko, 2024. "Transient chemical and structural changes in graphene oxide during ripening," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04224-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.