IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04185-w.html
   My bibliography  Save this article

Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state

Author

Listed:
  • Mohammad U. Zahid

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Liang Ma

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

  • Sung Jun Lim

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    DGIST)

  • Andrew M. Smith

    (University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

Suggested Citation

  • Mohammad U. Zahid & Liang Ma & Sung Jun Lim & Andrew M. Smith, 2018. "Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04185-w
    DOI: 10.1038/s41467-018-04185-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04185-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04185-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Stangherlin & Joseph L. Watson & David C. S. Wong & Silvia Barbiero & Aiwei Zeng & Estere Seinkmane & Sew Peak Chew & Andrew D. Beale & Edward A. Hayter & Alina Guna & Alison J. Inglis & Ma, 2021. "Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Benjamin Midtvedt & Jesús Pineda & Fredrik Skärberg & Erik Olsén & Harshith Bachimanchi & Emelie Wesén & Elin K. Esbjörner & Erik Selander & Fredrik Höök & Daniel Midtvedt & Giovanni Volpe, 2022. "Single-shot self-supervised object detection in microscopy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04185-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.