IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04103-0.html
   My bibliography  Save this article

Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase

Author

Listed:
  • Yifan Zhu

    (Nanjing University)

  • Jie Hu

    (Nanjing University
    Nanjing Forest University)

  • Xudong Fan

    (Nanjing University)

  • Jing Yang

    (Nanjing University)

  • Bin Liang

    (Nanjing University)

  • Xuefeng Zhu

    (Huazhong University of Science and Technology)

  • Jianchun Cheng

    (Nanjing University)

Abstract

The fine manipulation of sound fields is critical in acoustics yet is restricted by the coupled amplitude and phase modulations in existing wave-steering metamaterials. Commonly, unavoidable losses make it difficult to control coupling, thereby limiting device performance. Here we show the possibility of tailoring the loss in metamaterials to realize fine control of sound in three-dimensional (3D) space. Quantitative studies on the parameter dependence of reflection amplitude and phase identify quasi-decoupled points in the structural parameter space, allowing arbitrary amplitude-phase combinations for reflected sound. We further demonstrate the significance of our approach for sound manipulation by producing self-bending beams, multifocal focusing, and a single-plane two-dimensional hologram, as well as a multi-plane 3D hologram with quality better than the previous phase-controlled approach. Our work provides a route for harnessing sound via engineering the loss, enabling promising device applications in acoustics and related fields.

Suggested Citation

  • Yifan Zhu & Jie Hu & Xudong Fan & Jing Yang & Bin Liang & Xuefeng Zhu & Jianchun Cheng, 2018. "Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04103-0
    DOI: 10.1038/s41467-018-04103-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04103-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04103-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongwoo Lee & Beomseok Oh & Jeonghoon Park & Seong-Won Moon & Kilsoo Shin & Sea-Moon Kim & Junsuk Rho, 2024. "Wide field-of-hearing metalens for aberration-free sound capture," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yifan Zhu & Liyun Cao & Aurélien Merkel & Shi-Wang Fan & Brice Vincent & Badreddine Assouar, 2021. "Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04103-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.