IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04014-0.html
   My bibliography  Save this article

Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures

Author

Listed:
  • M. J. Veit

    (Stanford University)

  • R. Arras

    (University of Toulouse, CNRS, UPS)

  • B. J. Ramshaw

    (Los Alamos National Laboratory
    Cornell University)

  • R. Pentcheva

    (University of Duisburg-Essen)

  • Y. Suzuki

    (Stanford University)

Abstract

The manipulation of the spin degrees of freedom in a solid has been of fundamental and technological interest recently for developing high-speed, low-power computational devices. There has been much work focused on developing highly spin-polarized materials and understanding their behavior when incorporated into so-called spintronic devices. These devices usually require spin splitting with magnetic fields. However, there is another promising strategy to achieve spin splitting using spatial symmetry breaking without the use of a magnetic field, known as Rashba-type splitting. Here we report evidence for a giant Rashba-type splitting at the interface of LaTiO3 and SrTiO3. Analysis of the magnetotransport reveals anisotropic magnetoresistance, weak anti-localization and quantum oscillation behavior consistent with a large Rashba-type splitting. It is surprising to find a large Rashba-type splitting in 3d transition metal oxide-based systems such as the LaTiO3/SrTiO3 interface, but it is promising for the development of a new kind of oxide-based spintronics.

Suggested Citation

  • M. J. Veit & R. Arras & B. J. Ramshaw & R. Pentcheva & Y. Suzuki, 2018. "Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04014-0
    DOI: 10.1038/s41467-018-04014-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04014-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04014-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shingo Kaneta-Takada & Miho Kitamura & Shoma Arai & Takuma Arai & Ryo Okano & Le Duc Anh & Tatsuro Endo & Koji Horiba & Hiroshi Kumigashira & Masaki Kobayashi & Munetoshi Seki & Hitoshi Tabata & Masaa, 2022. "Giant spin-to-charge conversion at an all-epitaxial single-crystal-oxide Rashba interface with a strongly correlated metal interlayer," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04014-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.