IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03984-5.html
   My bibliography  Save this article

Engineering modular intracellular protein sensor-actuator devices

Author

Listed:
  • Velia Siciliano

    (Istituto Italiano di Tecnologia
    Massachusetts Institute of Technology)

  • Breanna DiAndreth

    (Massachusetts Institute of Technology)

  • Blandine Monel

    (Massachusetts Institute of Technology, and Harvard University
    Howard Hughes Medical Institute)

  • Jacob Beal

    (Raytheon BBN Technologies)

  • Jin Huh

    (Massachusetts Institute of Technology)

  • Kiera L Clayton

    (Massachusetts Institute of Technology, and Harvard University
    Howard Hughes Medical Institute)

  • Liliana Wroblewska

    (Pfizer)

  • AnneMarie McKeon

    (Massachusetts Institute of Technology, and Harvard University
    Howard Hughes Medical Institute)

  • Bruce D. Walker

    (Massachusetts Institute of Technology, and Harvard University
    Howard Hughes Medical Institute
    Massachusetts Institute of Technology)

  • Ron Weiss

    (Massachusetts Institute of Technology)

Abstract

Understanding and reshaping cellular behaviors with synthetic gene networks requires the ability to sense and respond to changes in the intracellular environment. Intracellular proteins are involved in almost all cellular processes, and thus can provide important information about changes in cellular conditions such as infections, mutations, or disease states. Here we report the design of a modular platform for intrabody-based protein sensing-actuation devices with transcriptional output triggered by detection of intracellular proteins in mammalian cells. We demonstrate reporter activation response (fluorescence, apoptotic gene) to proteins involved in hepatitis C virus (HCV) infection, human immunodeficiency virus (HIV) infection, and Huntington’s disease, and show sensor-based interference with HIV-1 downregulation of HLA-I in infected T cells. Our method provides a means to link varying cellular conditions with robust control of cellular behavior for scientific and therapeutic applications.

Suggested Citation

  • Velia Siciliano & Breanna DiAndreth & Blandine Monel & Jacob Beal & Jin Huh & Kiera L Clayton & Liliana Wroblewska & AnneMarie McKeon & Bruce D. Walker & Ron Weiss, 2018. "Engineering modular intracellular protein sensor-actuator devices," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03984-5
    DOI: 10.1038/s41467-018-03984-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03984-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03984-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander E. Vlahos & Jeewoo Kang & Carlos A. Aldrete & Ronghui Zhu & Lucy S. Chong & Michael B. Elowitz & Xiaojing J. Gao, 2022. "Protease-controlled secretion and display of intercellular signals," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Nik Franko & Ana Palma Teixeira & Shuai Xue & Ghislaine Charpin-El Hamri & Martin Fussenegger, 2021. "Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03984-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.