IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03921-6.html
   My bibliography  Save this article

A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development

Author

Listed:
  • Mingtang Xie

    (The Salk Institute for Biological Studies
    The Salk Institute for Biological Studies)

  • Hongyu Chen

    (Dartmouth College)

  • Ling Huang

    (The Salk Institute for Biological Studies)

  • Ryan C. O’Neil

    (The Salk Institute for Biological Studies
    University of California at San Diego)

  • Maxim N. Shokhirev

    (The Salk Institute for Biological Studies)

  • Joseph R. Ecker

    (The Salk Institute for Biological Studies
    The Salk Institute for Biological Studies)

Abstract

Cytokinin fulfills its diverse roles in planta through a series of transcriptional responses. We identify the in vivo DNA binding site profiles for three genetically redundant type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs): ARR1, ARR10, and ARR12. The expression and genome-wide DNA binding locations of the three B-ARRs extensively overlap. Constructing a primary cytokinin response transcriptional network reveals a recurring theme of widespread cross-regulation between the components of the cytokinin pathway and other plant hormone pathways. The B-ARRs are found to have similar DNA binding motifs, though sequences flanking the core motif were degenerate. Cytokinin treatments amalgamate the three different B-ARRs motifs to identical DNA binding signatures (AGATHY, H(a/t/c), Y(t/c)) which suggests cytokinin may regulate binding activity of B-ARR family members. Furthermore, we find that WUSCHEL, a key gene required for apical meristem maintenance, is a cytokinin-dependent B-ARR target gene, demonstrating the importance of the cytokinin transcription factor network in shoot development.

Suggested Citation

  • Mingtang Xie & Hongyu Chen & Ling Huang & Ryan C. O’Neil & Maxim N. Shokhirev & Joseph R. Ecker, 2018. "A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03921-6
    DOI: 10.1038/s41467-018-03921-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03921-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03921-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiahuan Chen & Zhijuan Wang & Lixiang Wang & Yangyang Hu & Qiqi Yan & Jingjing Lu & Ziyin Ren & Yujie Hong & Hongtao Ji & Hui Wang & Xinying Wu & Yanru Lin & Chao Su & Thomas Ott & Xia Li, 2022. "The B-type response regulator GmRR11d mediates systemic inhibition of symbiotic nodulation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03921-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.