IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03870-0.html
   My bibliography  Save this article

Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging

Author

Listed:
  • Wonho Lee

    (Yonsei University)

  • Yuan Liu

    (Tsinghua University)

  • Yongjun Lee

    (Yonsei University)

  • Bhupendra K. Sharma

    (Yonsei University)

  • Sachin M. Shinde

    (Yonsei University)

  • Seong Dae Kim

    (Yonsei University)

  • Kewang Nan

    (Northwestern University)

  • Zheng Yan

    (Northwestern University)

  • Mengdi Han

    (Northwestern University)

  • Yonggang Huang

    (Northwestern University)

  • Yihui Zhang

    (Tsinghua University)

  • Jong-Hyun Ahn

    (Yonsei University)

  • John A. Rogers

    (Northwestern University)

Abstract

Efficient and highly functional three-dimensional systems that are ubiquitous in biology suggest that similar design architectures could be useful in electronic and optoelectronic technologies, extending their levels of functionality beyond those achievable with traditional, planar two-dimensional platforms. Complex three-dimensional structures inspired by origami, kirigami have promise as routes for two-dimensional to three-dimensional transformation, but current examples lack the necessary combination of functional materials, mechanics designs, system-level architectures, and integration capabilities for practical devices with unique operational features. Here, we show that two-dimensional semiconductor/semi-metal materials can play critical roles in this context, through demonstrations of complex, mechanically assembled three-dimensional systems for light-imaging capabilities that can encompass measurements of the direction, intensity and angular divergence properties of incident light. Specifically, the mechanics of graphene and MoS2, together with strategically configured supporting polymer films, can yield arrays of photodetectors in distinct, engineered three-dimensional geometries, including octagonal prisms, octagonal prismoids, and hemispherical domes.

Suggested Citation

  • Wonho Lee & Yuan Liu & Yongjun Lee & Bhupendra K. Sharma & Sachin M. Shinde & Seong Dae Kim & Kewang Nan & Zheng Yan & Mengdi Han & Yonggang Huang & Yihui Zhang & Jong-Hyun Ahn & John A. Rogers, 2018. "Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03870-0
    DOI: 10.1038/s41467-018-03870-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03870-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03870-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feilong Zhang & Dong Li & Changxian Wang & Zhihua Liu & Man Yang & Zequn Cui & Junqi Yi & Ming Wang & Ying Jiang & Zhisheng Lv & Shutao Wang & Huajian Gao & Xiaodong Chen, 2022. "Shape morphing of plastic films," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ziyu Zhang & Binmin Wu & Yang Wang & Tianjun Cai & Mingze Ma & Chunyu You & Chang Liu & Guobang Jiang & Yuhang Hu & Xing Li & Xiang-Zhong Chen & Enming Song & Jizhai Cui & Gaoshan Huang & Suwit Kiravi, 2024. "Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Cao, Dong-Xing & Lu, Yi-Ming & Lai, Siu-Kai & Mao, Jia-Jia & Guo, Xiang-Ying & Shen, Yong-Jun, 2022. "A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester," Energy, Elsevier, vol. 254(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03870-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.