IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03757-0.html
   My bibliography  Save this article

Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance

Author

Listed:
  • Alexander Z. Chen

    (University of Virginia)

  • Michelle Shiu

    (University of Virginia)

  • Jennifer H. Ma

    (University of Virginia)

  • Matthew R. Alpert

    (University of Virginia)

  • Depei Zhang

    (University of Virginia)

  • Benjamin J. Foley

    (University of Virginia)

  • Detlef-M. Smilgies

    (Cornell University)

  • Seung-Hun Lee

    (University of Virginia)

  • Joshua J. Choi

    (University of Virginia)

Abstract

Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid–air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

Suggested Citation

  • Alexander Z. Chen & Michelle Shiu & Jennifer H. Ma & Matthew R. Alpert & Depei Zhang & Benjamin J. Foley & Detlef-M. Smilgies & Seung-Hun Lee & Joshua J. Choi, 2018. "Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03757-0
    DOI: 10.1038/s41467-018-03757-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03757-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03757-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajie Yan & Yingguo Yang & Mingli Liang & Mohamed Abdellah & Tõnu Pullerits & Kaibo Zheng & Ziqi Liang, 2021. "Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03757-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.