IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03723-w.html
   My bibliography  Save this article

Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices

Author

Listed:
  • Satoru Masubuchi

    (University of Tokyo)

  • Masataka Morimoto

    (University of Tokyo)

  • Sei Morikawa

    (University of Tokyo)

  • Momoko Onodera

    (University of Tokyo)

  • Yuta Asakawa

    (University of Tokyo)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Tomoki Machida

    (University of Tokyo)

Abstract

Van der Waals heterostructures are comprised of stacked atomically thin two-dimensional crystals and serve as novel materials providing unprecedented properties. However, the random natures in positions and shapes of exfoliated two-dimensional crystals have required the repetitive manual tasks of optical microscopy-based searching and mechanical transferring, thereby severely limiting the complexity of heterostructures. To solve the problem, here we develop a robotic system that searches exfoliated two-dimensional crystals and assembles them into superlattices inside the glovebox. The system can autonomously detect 400 monolayer graphene flakes per hour with a small error rate (

Suggested Citation

  • Satoru Masubuchi & Masataka Morimoto & Sei Morikawa & Momoko Onodera & Yuta Asakawa & Kenji Watanabe & Takashi Taniguchi & Tomoki Machida, 2018. "Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03723-w
    DOI: 10.1038/s41467-018-03723-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03723-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03723-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Fuhuan Shen & Zhenghe Zhang & Yaoqiang Zhou & Jingwen Ma & Kun Chen & Huanjun Chen & Shaojun Wang & Jianbin Xu & Zefeng Chen, 2022. "Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Su-Beom Song & Sangho Yoon & So Young Kim & Sera Yang & Seung-Young Seo & Soonyoung Cha & Hyeon-Woo Jeong & Kenji Watanabe & Takashi Taniguchi & Gil-Ho Lee & Jun Sung Kim & Moon-Ho Jo & Jonghwan Kim, 2021. "Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03723-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.