IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03693-z.html
   My bibliography  Save this article

Infused ice can multiply IceCube’s sensitivity

Author

Listed:
  • Imre Bartos

    (University of Florida
    Columbia Astrophysics Laboratory)

  • Zsuzsa Marka

    (Columbia Astrophysics Laboratory)

  • Szabolcs Marka

    (Columbia Astrophysics Laboratory)

Abstract

The IceCube Neutrino Observatory is the world’s largest neutrino detector with a cubic-kilometer instrumented volume at the South Pole. It is preparing for a major upgrade that will significantly increase its sensitivity. A promising technological innovation investigated for this upgrade is wavelength shifting optics. Augmenting sensors with such optics could increase the photo-collection area of IceCube’s digital optical modules, and shift the incoming photons’ wavelength to where these modules are the most sensitive. Here we investigate the use of IceCube’s drill holes as wavelength shifting optics. We calculate the sensitivity enhancement due to increasing the ice’s refractive index in the holes, and infusing wavelength-shifting substrate into the ice. We find that, with adequate wavelength-shifter infusion, every ~0.05 increase in the ice’s refractive index will increase IceCube’s photon sensitivity by 100%, opening the possibility for the substantial, cost-effective expansion of IceCube’s reach.

Suggested Citation

  • Imre Bartos & Zsuzsa Marka & Szabolcs Marka, 2018. "Infused ice can multiply IceCube’s sensitivity," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03693-z
    DOI: 10.1038/s41467-018-03693-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03693-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03693-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03693-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.