IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03635-9.html
   My bibliography  Save this article

PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition

Author

Listed:
  • Timothy J. Durham

    (University of Washington)

  • Maxwell W. Libbrecht

    (University of Washington)

  • J. Jeffry Howbert

    (University of Washington)

  • Jeff Bilmes

    (University of Washington)

  • William Stafford Noble

    (University of Washington
    University of Washington)

Abstract

The Encyclopedia of DNA Elements (ENCODE) and the Roadmap Epigenomics Project seek to characterize the epigenome in diverse cell types using assays that identify, for example, genomic regions with modified histones or accessible chromatin. These efforts have produced thousands of datasets but cannot possibly measure each epigenomic factor in all cell types. To address this, we present a method, PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition (PREDICTD), to computationally impute missing experiments. PREDICTD leverages an elegant model called “tensor decomposition” to impute many experiments simultaneously. Compared with the current state-of-the-art method, ChromImpute, PREDICTD produces lower overall mean squared error, and combining the two methods yields further improvement. We show that PREDICTD data captures enhancer activity at noncoding human accelerated regions. PREDICTD provides reference imputed data and open-source software for investigating new cell types, and demonstrates the utility of tensor decomposition and cloud computing, both promising technologies for bioinformatics.

Suggested Citation

  • Timothy J. Durham & Maxwell W. Libbrecht & J. Jeffry Howbert & Jeff Bilmes & William Stafford Noble, 2018. "PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor Decomposition," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03635-9
    DOI: 10.1038/s41467-018-03635-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03635-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03635-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alex Hawkins-Hooker & Giovanni Visonà & Tanmayee Narendra & Mateo Rojas-Carulla & Bernhard Schölkopf & Gabriele Schweikert, 2023. "Getting personal with epigenetics: towards individual-specific epigenomic imputation with machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03635-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.