IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03545-w.html
   My bibliography  Save this article

O2 evolution and recovery of the water-oxidizing enzyme

Author

Listed:
  • Keisuke Kawashima

    (The University of Tokyo, 7-3-1 Hongo)

  • Tomohiro Takaoka

    (The University of Tokyo, 7-3-1 Hongo)

  • Hiroki Kimura

    (The University of Tokyo, 7-3-1 Hongo)

  • Keisuke Saito

    (The University of Tokyo, 7-3-1 Hongo
    The University of Tokyo, 4-6-1 Komaba)

  • Hiroshi Ishikita

    (The University of Tokyo, 7-3-1 Hongo
    The University of Tokyo, 4-6-1 Komaba)

Abstract

In photosystem II, light-induced water oxidation occurs at the Mn4CaO5 cluster. Here we demonstrate proton releases, dioxygen formation, and substrate water incorporation in response to Mn4CaO5 oxidation in the protein environment, using a quantum mechanical/molecular mechanical approach and molecular dynamics simulations. In S2, H2O at the W1 site forms a low-barrier H-bond with D1-Asp61. In the S2-to-S3 transition, oxidation of OW1H– to OW1•–, concerted proton transfer from OW1H– to D1-Asp61, and binding of a water molecule Wn-W1 at OW1•– are observed. In S4, W n -W1 facilitates oxo-oxyl radical coupling between OW1•– and corner μ-oxo O4. Deprotonation via D1-Asp61 leads to formation of OW1=O4. As OW1=O4 moves away from Mn, H2O at W539 is incorporated into the vacant O4 site of the O2-evolved Mn4CaO4 cluster, forming a μ-oxo bridge (Mn3–OW539–Mn4) in an exergonic process. Simultaneously, Wn-W1 is incorporated as W1, recovering the Mn4CaO5 cluster.

Suggested Citation

  • Keisuke Kawashima & Tomohiro Takaoka & Hiroki Kimura & Keisuke Saito & Hiroshi Ishikita, 2018. "O2 evolution and recovery of the water-oxidizing enzyme," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03545-w
    DOI: 10.1038/s41467-018-03545-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03545-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03545-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana Hussein & Mohamed Ibrahim & Asmit Bhowmick & Philipp S. Simon & Ruchira Chatterjee & Louise Lassalle & Margaret Doyle & Isabel Bogacz & In-Sik Kim & Mun Hon Cheah & Sheraz Gul & Casper Lichtenber, 2021. "Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03545-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.