Author
Listed:
- Xiaojiao Guo
(Chinese Academy of Sciences
Chinese Academy of Sciences)
- Zongyuan Ma
(Chinese Academy of Sciences
Chinese Academy of Sciences)
- Baozhen Du
(Chinese Academy of Sciences)
- Ting Li
(Chinese Academy of Sciences)
- Wudi Li
(Chinese Academy of Sciences)
- Lingling Xu
(Chinese Academy of Sciences)
- Jing He
(Chinese Academy of Sciences)
- Le Kang
(Chinese Academy of Sciences
Chinese Academy of Sciences)
Abstract
Dopamine receptor 1 (Dop1) mediates locust attraction behaviors, however, the mechanism by which Dop1 modulates this process remains unknown to date. Here, we identify differentially expressed small RNAs associated with locust olfactory attraction after activating and inhibiting Dop1. Small RNA transcriptome analysis and qPCR validation reveal that Dop1 activation and inhibition downregulates and upregulates microRNA-9a (miR-9a) expression, respectively. miR-9a knockdown in solitarious locusts increases their attraction to gregarious volatiles, whereas miR-9a overexpression in gregarious locusts reduces olfactory attraction. Moreover, miR-9a directly targets adenylyl cyclase 2 (ac2), causing its downregulation at the mRNA and protein levels. ac2 responds to Dop1 and mediates locust olfactory attraction. Mechanistically, Dop1 inhibits miR-9a expression through inducing the dissociation of La protein from pre-miR-9a and resulting in miR-9a maturation inhibition. Our results reveal a Dop1–miR-9a–AC2 circuit that modulates locust olfactory attraction underlying aggregation. This study suggests that miRNAs act as key messengers in the GPCR signaling.
Suggested Citation
Xiaojiao Guo & Zongyuan Ma & Baozhen Du & Ting Li & Wudi Li & Lingling Xu & Jing He & Le Kang, 2018.
"Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts,"
Nature Communications, Nature, vol. 9(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03437-z
DOI: 10.1038/s41467-018-03437-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03437-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.