IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03429-z.html
   My bibliography  Save this article

Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid

Author

Listed:
  • Nana Han

    (Beijing University of Chemical Technology)

  • Ke R. Yang

    (Yale University)

  • Zhiyi Lu

    (Beijing University of Chemical Technology)

  • Yingjie Li

    (Beijing University of Chemical Technology)

  • Wenwen Xu

    (Beijing University of Chemical Technology)

  • Tengfei Gao

    (Beijing University of Chemical Technology)

  • Zhao Cai

    (Beijing University of Chemical Technology)

  • Ying Zhang

    (Beijing University of Chemical Technology)

  • Victor S. Batista

    (Yale University)

  • Wen Liu

    (Beijing University of Chemical Technology
    Yale University)

  • Xiaoming Sun

    (Beijing University of Chemical Technology)

Abstract

Tungsten carbide is one of the most promising electrocatalysts for the hydrogen evolution reaction, although it exhibits sluggish kinetics due to a strong tungsten-hydrogen bond. In addition, tungsten carbide’s catalytic activity toward the oxygen evolution reaction has yet to be reported. Here, we introduce a superaerophobic nitrogen-doped tungsten carbide nanoarray electrode exhibiting high stability and activity toward hydrogen evolution reaction as well as driving oxygen evolution efficiently in acid. Nitrogen-doping and nanoarray structure accelerate hydrogen gas release from the electrode, realizing a current density of −200 mA cm−2 at the potential of −190 mV vs. reversible hydrogen electrode, which manifest one of the best non-noble metal catalysts for hydrogen evolution reaction. Under acidic conditions (0.5 M sulfuric acid), water splitting catalyzed by nitrogen-doped tungsten carbide nanoarray starts from about 1.4 V, and outperforms most other water splitting catalysts.

Suggested Citation

  • Nana Han & Ke R. Yang & Zhiyi Lu & Yingjie Li & Wenwen Xu & Tengfei Gao & Zhao Cai & Ying Zhang & Victor S. Batista & Wen Liu & Xiaoming Sun, 2018. "Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03429-z
    DOI: 10.1038/s41467-018-03429-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03429-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03429-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing Deng & Zhe Wang & Weiyin Chen & John Tianci Li & Duy Xuan Luong & Robert A. Carter & Guanhui Gao & Boris I. Yakobson & Yufeng Zhao & James M. Tour, 2022. "Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yang, Yang & Li, Jun & Yang, Yingrui & Lan, Linghan & Liu, Run & Fu, Qian & Zhang, Liang & Liao, Qiang & Zhu, Xun, 2022. "Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution," Applied Energy, Elsevier, vol. 307(C).
    5. Darband, Ghasem Barati & Aliofkhazraei, Mahmood & Shanmugam, Sangaraju, 2019. "Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03429-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.