IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03352-3.html
   My bibliography  Save this article

Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions

Author

Listed:
  • Christine S. O’Connell

    (University of California)

  • Leilei Ruan

    (University of California)

  • Whendee L. Silver

    (University of California)

Abstract

Climate change models predict more frequent and severe droughts in the humid tropics. How drought will impact tropical forest carbon and greenhouse gas dynamics is poorly understood. Here we report the effects of the severe 2015 Caribbean drought on soil moisture, oxygen, phosphorus (P), and greenhouse gas emissions in a humid tropical forest in Puerto Rico. Drought significantly decreases inorganic P concentrations, an element commonly limiting to net primary productivity in tropical forests, and significantly increases organic P. High-frequency greenhouse gas measurements show varied impacts across topography. Soil carbon dioxide emissions increase by 60% on slopes and 163% in valleys. Methane (CH4) consumption increases significantly during drought, but high CH4 fluxes post-drought offset this sink after 7 weeks. The rapid response and slow recovery to drought suggest tropical forest biogeochemistry is more sensitive to climate change than previously believed, with potentially large direct and indirect consequences for regional and global carbon cycles.

Suggested Citation

  • Christine S. O’Connell & Leilei Ruan & Whendee L. Silver, 2018. "Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03352-3
    DOI: 10.1038/s41467-018-03352-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03352-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03352-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tyler L. Anthony & Daphne J. Szutu & Joseph G. Verfaillie & Dennis D. Baldocchi & Whendee L. Silver, 2023. "Carbon-sink potential of continuous alfalfa agriculture lowered by short-term nitrous oxide emission events," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. K. B. S. Huth & L. J. Waldorp & J. Luigjes & A. E. Goudriaan & R. J. Holst & M. Marsman, 2022. "A Note on the Structural Change Test in Highly Parameterized Psychometric Models," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1064-1080, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03352-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.